Example #1
0
def test_coin_biased_towards_falsehood():
    p = 1.0 / 500

    for i in range(255):
        if i != 1:
            assert not cu.biased_coin(ConjectureData.for_buffer([0, i, 0, 1]), p)
    assert cu.biased_coin(ConjectureData.for_buffer([0, 1, 0, 0]), p)
Example #2
0
def test_coin_biased_towards_truth():
    p = 1 - 1.0 / 500

    for i in range(1, 255):
        assert cu.biased_coin(ConjectureData.for_buffer([0, i, 0, 0]), p)

    assert not cu.biased_coin(ConjectureData.for_buffer([0, 0, 0, 1]), p)
Example #3
0
def test_coin_biased_towards_falsehood():
    p = 1.0 / 500

    for i in range(255):
        assert not cu.biased_coin(ConjectureData.for_buffer([i]), p)

    second_order = [
        cu.biased_coin(ConjectureData.for_buffer([255, i]), p) for i in range(255)
    ]

    assert False in second_order
    assert True in second_order
def test_coin_biased_towards_falsehood():
    p = 1.0 / 500

    for i in range(255):
        assert not cu.biased_coin(ConjectureData.for_buffer([i]), p)

    second_order = [
        cu.biased_coin(ConjectureData.for_buffer([255, i]), p) for i in range(255)
    ]

    assert False in second_order
    assert True in second_order
Example #5
0
    def run(self, state_machine, print_steps=None):
        if print_steps is None:
            print_steps = current_verbosity() >= Verbosity.debug
        self.data.hypothesis_runner = state_machine

        stopping_value = 1 - 1.0 / (1 + self.n_steps * 0.5)
        try:
            steps = 0
            while True:
                if steps == self.n_steps:
                    stopping_value = 0
                self.data.start_example()
                if not cu.biased_coin(self.data, stopping_value):
                    self.data.stop_example()
                    break

                value = self.data.draw(state_machine.steps())
                steps += 1
                if steps <= self.n_steps:
                    if print_steps:
                        state_machine.print_step(value)
                    state_machine.execute_step(value)
                self.data.stop_example()
        finally:
            state_machine.teardown()
Example #6
0
    def do_draw(self, data):
        seen = set()
        result = []
        if self.max_size == self.min_size:
            while len(result) < self.max_size:
                v = data.draw(self.element_strategy)
                k = self.key(v)
                if k not in seen:
                    result.append(v)
                    seen.add(k)
            return result

        stopping_value = 1 - 1.0 / (1 + self.average_size)
        duplicates = 0
        while len(result) < self.max_size:
            data.start_example()
            if len(result) >= self.min_size:
                more = cu.biased_coin(data, stopping_value)
            else:
                more = True
            if not more:
                data.stop_example()
                break
            value = data.draw(self.element_strategy)
            data.stop_example()
            k = self.key(value)
            if k in seen:
                duplicates += 1
                assume(duplicates <= len(result))
                continue
            seen.add(k)
            result.append(value)
        assume(len(result) >= self.min_size)
        return result
    def run(self, state_machine, print_steps=None):
        if print_steps is None:
            print_steps = current_verbosity() >= Verbosity.debug
        self.data.hypothesis_runner = state_machine

        stopping_value = 1 - 1.0 / (1 + self.n_steps * 0.5)
        try:
            state_machine.check_invariants()

            steps = 0
            while True:
                if steps >= self.n_steps:
                    stopping_value = 0
                self.data.start_example()
                if not cu.biased_coin(self.data, stopping_value):
                    self.data.stop_example()
                    break
                assert steps < self.n_steps
                value = self.data.draw(state_machine.steps())
                steps += 1
                if print_steps:
                    state_machine.print_step(value)
                state_machine.execute_step(value)
                self.data.stop_example()
                state_machine.check_invariants()
        finally:
            state_machine.teardown()
Example #8
0
    def is_enabled(self, name):
        """Tests whether the feature named ``name`` should be enabled on this
        test run."""
        if self.__data is None or self.__data.frozen:
            # Feature set objects might hang around after data generation has
            # finished. If this happens then we just report all new features as
            # enabled, because that's our shrinking direction and they have no
            # impact on data generation if they weren't used while it was
            # running.
            return not self.__is_disabled.get(name, False)

        data = self.__data

        data.start_example(label=FEATURE_LABEL)

        # If we've already decided on this feature then we don't actually
        # need to draw anything, but we do write the same decision to the
        # input stream. This allows us to lazily decide whether a feature
        # is enabled, because it means that if we happen to delete the part
        # of the test case where we originally decided, the next point at
        # which we make this decision just makes the decision it previously
        # made.
        is_disabled = cu.biased_coin(
            self.__data, self.__p_disabled, forced=self.__is_disabled.get(name)
        )
        self.__is_disabled[name] = is_disabled
        data.stop_example()
        return not is_disabled
    def do_draw(self, data):
        seen = set()
        result = []
        if self.max_size == self.min_size:
            while len(result) < self.max_size:
                v = data.draw(self.element_strategy)
                k = self.key(v)
                if k not in seen:
                    result.append(v)
                    seen.add(k)
            return result

        stopping_value = 1 - 1.0 / (1 + self.average_size)
        duplicates = 0
        while len(result) < self.max_size:
            data.start_example()
            if len(result) >= self.min_size:
                more = cu.biased_coin(data, stopping_value)
            else:
                more = True
            if not more:
                data.stop_example()
                break
            value = data.draw(self.element_strategy)
            data.stop_example()
            k = self.key(value)
            if k in seen:
                duplicates += 1
                assume(duplicates <= len(result))
                continue
            seen.add(k)
            result.append(value)
        assume(len(result) >= self.min_size)
        return result
def test_unbiased_coin_has_no_second_order():
    flips = [
        cu.biased_coin(ConjectureData.for_buffer([i]), 0.5)
        for i in range(256)
    ]

    counts = Counter(flips)
    assert counts[True] == counts[False] == 128
Example #11
0
def test_drawing_an_exact_fraction_coin():
    count = 0
    total = 0
    p = Fraction(3, 8)
    for i in range(4):
        for j in range(4):
            total += 1
            if cu.biased_coin(ConjectureData.for_buffer([i, j, 0]), p):
                count += 1
    assert p == Fraction(count, total)
def test_unbiased_coin_has_no_second_order():
    counts = Counter()

    for i in range(256):
        buf = hbytes([i])
        data = ConjectureData.for_buffer(buf)
        result = cu.biased_coin(data, 0.5)
        if data.buffer == buf:
            counts[result] += 1

    assert counts[False] == counts[True] > 0
Example #13
0
def test_unbiased_coin_has_no_second_order():
    counts = Counter()

    for i in range(256):
        buf = hbytes([i])
        data = ConjectureData.for_buffer(buf)
        result = cu.biased_coin(data, 0.5)
        if data.buffer == buf:
            counts[result] += 1

    assert counts[False] == counts[True] > 0
Example #14
0
    def do_draw(self, data):
        if len(self.intervals) > 256:
            if biased_coin(data, 0.2):
                i = integer_range(data, 256, len(self.intervals) - 1)
            else:
                i = integer_range(data, 0, 255)
        else:
            i = integer_range(data, 0, len(self.intervals) - 1)

        i = self.rewrite_integer(i)

        return chr(self.intervals[i])
 def do_draw(self, data):
     if cu.biased_coin(data, self.__p):
         return data.draw(self) + data.draw(self)
     else:
         # We draw n as two separate calls so that it doesn't show up as a
         # single block. If it did, the heuristics that allow us to move
         # blocks around would fire and it would move right, which would
         # then allow us to shrink it more easily.
         n = (data.draw_bits(16) << 16) | data.draw_bits(16)
         if n == MAX_INT:
             return (POISON,)
         else:
             return (None,)
 def do_draw(self, data):
     if cu.biased_coin(data, self.__p):
         return data.draw(self) + data.draw(self)
     else:
         # We draw n as two separate calls so that it doesn't show up as a
         # single block. If it did, the heuristics that allow us to move
         # blocks around would fire and it would move right, which would
         # then allow us to shrink it more easily.
         n = (data.draw_bits(16) << 16) | data.draw_bits(16)
         if n == MAX_INT:
             return (POISON, )
         else:
             return (None, )
Example #17
0
    def do_draw(self, data):
        if self.max_size == self.min_size:
            return [
                data.draw(self.element_strategy) for _ in range(self.min_size)
            ]

        stopping_value = 1 - 1.0 / (1 + self.average_length)
        result = []
        while True:
            data.start_example()
            more = cu.biased_coin(data, stopping_value)
            value = data.draw(self.element_strategy)
            data.stop_example()
            if not more:
                if len(result) < self.min_size:
                    continue
                else:
                    break
            result.append(value)
        if self.max_size < float('inf'):
            result = result[:self.max_size]
        return result
Example #18
0
    def do_draw(self, data):
        if self.max_size == self.min_size:
            return [
                data.draw(self.element_strategy) for _ in range(self.min_size)
            ]

        stopping_value = 1 - 1.0 / (1 + self.average_length)
        result = []
        while len(result) < self.max_size:
            data.start_example()
            more = cu.biased_coin(data, stopping_value)
            if not more:
                data.stop_example()
                if len(result) < self.min_size:
                    continue
                else:
                    break
            value = data.draw(self.element_strategy)
            data.stop_example()
            result.append(value)
        else:
            cu.write(data, TERMINATOR)
        return result
Example #19
0
    def do_draw(self, data):
        if self.max_size == self.min_size:
            return [
                data.draw(self.element_strategy)
                for _ in range(self.min_size)
            ]

        stopping_value = 1 - 1.0 / (1 + self.average_length)
        result = []
        while True:
            data.start_example()
            more = cu.biased_coin(data, stopping_value)
            value = data.draw(self.element_strategy)
            data.stop_example()
            if not more:
                if len(result) < self.min_size:
                    continue
                else:
                    break
            result.append(value)
        if self.max_size < float('inf'):
            result = result[:self.max_size]
        return result
Example #20
0
    def run(self, state_machine, print_steps=None):
        if print_steps is None:
            print_steps = current_verbosity() >= Verbosity.debug

        stopping_value = 1 - 1.0 / (1 + self.n_steps * 0.5)
        try:
            steps = 0
            while True:
                if steps == self.n_steps:
                    stopping_value = 0
                self.data.start_example()
                if not cu.biased_coin(self.data, stopping_value):
                    self.data.stop_example()
                    break

                value = self.data.draw(state_machine.steps())
                steps += 1
                if steps <= self.n_steps:
                    if print_steps:
                        state_machine.print_step(value)
                    state_machine.execute_step(value)
                self.data.stop_example()
        finally:
            state_machine.teardown()
def test_drawing_an_exact_fraction_coin():
    count = 0
    for i in hrange(8):
        if cu.biased_coin(ConjectureData.for_buffer([i]), Fraction(3, 8)):
            count += 1
    assert count == 3
Example #22
0
def test_drawing_impossible_coin_still_writes():
    data = ConjectureData.for_buffer([1, 0])
    assert not data.buffer
    assert not cu.biased_coin(data, 0)
    assert data.buffer
Example #23
0
def test_drawing_certain_coin_still_writes():
    data = ConjectureData.for_buffer([0, 1])
    assert not data.buffer
    assert cu.biased_coin(data, 1)
    assert data.buffer
Example #24
0
    def _draw_loop_dimensions(self, data, use=None):
        # All shapes are handled in column-major order; i.e. they are reversed
        base_shape = self.base_shape[::-1]
        result_shape = list(base_shape)
        shapes = [[] for _ in range(self.num_shapes)]
        if use is None:
            use = [True for _ in range(self.num_shapes)]
        else:
            assert len(use) == self.num_shapes
            assert all(isinstance(x, bool) for x in use)

        for dim_count in range(1, self.max_dims + 1):
            dim = dim_count - 1

            # We begin by drawing a valid dimension-size for the given
            # dimension. This restricts the variability across the shapes
            # at this dimension such that they can only choose between
            # this size and a singleton dimension.
            if len(base_shape) < dim_count or base_shape[dim] == 1:
                # dim is unrestricted by the base-shape: shrink to min_side
                dim_side = data.draw(self.side_strat)
            elif base_shape[dim] <= self.max_side:
                # dim is aligned with non-singleton base-dim
                dim_side = base_shape[dim]
            else:
                # only a singleton is valid in alignment with the base-dim
                dim_side = 1

            for shape_id, shape in enumerate(shapes):
                # Populating this dimension-size for each shape, either
                # the drawn size is used or, if permitted, a singleton
                # dimension.
                if dim_count <= len(base_shape) and self.size_one_allowed:
                    # aligned: shrink towards size 1
                    side = data.draw(st.sampled_from([1, dim_side]))
                else:
                    side = dim_side

                # Use a trick where where a biased coin is queried to see
                # if the given shape-tuple will continue to be grown. All
                # of the relevant draws will still be made for the given
                # shape-tuple even if it is no longer being added to.
                # This helps to ensure more stable shrinking behavior.
                if self.min_dims < dim_count:
                    use[shape_id] &= cu.biased_coin(
                        data, 1 - 1 / (1 + self.max_dims - dim)
                    )

                if use[shape_id]:
                    shape.append(side)
                    if len(result_shape) < len(shape):
                        result_shape.append(shape[-1])
                    elif shape[-1] != 1 and result_shape[dim] == 1:
                        result_shape[dim] = shape[-1]
            if not any(use):
                break

        result_shape = result_shape[: max(map(len, [self.base_shape] + shapes))]

        assert len(shapes) == self.num_shapes
        assert all(self.min_dims <= len(s) <= self.max_dims for s in shapes)
        assert all(self.min_side <= s <= self.max_side for side in shapes for s in side)

        return BroadcastableShapes(
            input_shapes=tuple(tuple(reversed(shape)) for shape in shapes),
            result_shape=tuple(reversed(result_shape)),
        )
Example #25
0
def test_drawing_an_exact_fraction_coin():
    count = 0
    for i in hrange(8):
        if cu.biased_coin(ConjectureData.for_buffer([i]), Fraction(3, 8)):
            count += 1
    assert count == 3
def test_drawing_certain_coin_still_writes():
    data = ConjectureData.for_buffer([0, 1])
    assert not data.buffer
    assert cu.biased_coin(data, 1)
    assert data.buffer
def test_drawing_impossible_coin_still_writes():
    data = ConjectureData.for_buffer([1, 0])
    assert not data.buffer
    assert not cu.biased_coin(data, 0)
    assert data.buffer
Example #28
0
def test_can_draw_arbitrary_fractions(p, b):
    try:
        cu.biased_coin(ConjectureData.for_buffer(b), p)
    except StopTest:
        reject()
Example #29
0
def test_assert_biased_coin_always_treats_one_as_true():
    assert cu.biased_coin(ConjectureData.for_buffer([0, 1]), p=1.0 / 257)
Example #30
0
def test_biased_coin_can_be_forced():
    assert cu.biased_coin(ConjectureData.for_buffer([0]), p=0.5, forced=True)
    assert not cu.biased_coin(
        ConjectureData.for_buffer([1]), p=0.5, forced=False)
Example #31
0
def test_too_small_to_be_useful_coin():
    assert not cu.biased_coin(ConjectureData.for_buffer([1]), 0.5**65)
 def do_draw(self, data):
     if cu.biased_coin(data, self.__poison_chance):
         return POISON
     else:
         return data.draw(self.__ints)
Example #33
0
 def do_draw(self, data):
     if cu.biased_coin(data, self.__poison_chance):
         return POISON
     else:
         return data.draw(self.__ints)