# on either 2D or 3D head models # can be applied to Cohen’s D (C as done here) or # statistical values (statscondCluster.F_obs or F_obs_plot) # of inter-individual brain connectivity # defining manually bad channel for viz test epo1.info["bads"] = ["F8", "Fp2", "Cz", "O2"] epo2.info["bads"] = ["F7", "O1"] # Warning, threshold='auto' must be used carefully, # it is calculated specifically for the dyad, # and therefore does not allow comparability between different dyads. # Visualization of inter-brain connectivity in 2D viz.viz_2D_topomap_inter(epo1, epo2, C, threshold='auto', steps=10, lab=True) # Visualization of inter-brain connectivity in 3D viz.viz_3D_inter(epo1, epo2, C, threshold='auto', steps=10, lab=False) # Visualization of intra-brain connectivity in 2D viz.viz_2D_topomap_intra(epo1, epo2, C1=result_intra[0], C2=result_intra[1], threshold='auto', steps=2, lab=False) # Visualization of intra-brain connectivity in 3D viz.viz_3D_intra(epo1,
# turn off x ticklabels for all but the lower axes for ax in ax1, ax2, ax3: plt.setp(ax.get_xticklabels(), visible=False) plt.show() # Setting the average reference cleaned_epochs_AR[0].set_eeg_reference('average') cleaned_epochs_AR[1].set_eeg_reference('average') # Saving cleaned epochs #cleaned_epochs_AR[0].save('epochs_cleaned_pair003_a-epo.fif', overwrite = True) #cleaned_epochs_AR[1].save('epochs_cleaned_pair003_b-epo.fif', overwrite = True) ''' ################# Remove from here from collections import OrderedDict #Defining frequency bands freq_bands = {'Theta': [4, 7], 'Alpha-Low': [7.5, 11], 'Alpha-High': [11.5, 13], 'Beta': [13.5, 29.5], 'Gamma': [30, 48]} freq_bands = OrderedDict(freq_bands) sampling_rate = epo1.info['sfreq'] #Picking preproccessed epochs for each participant preproc_S1 = cleaned_epochs_AR[0]