def testdata_raw_internals1(**kwargs): from ibeis.algo.hots.smk import smk_debug ibs, annots_df, daids, qaids, invindex, qreq_ = smk_debug.testdata_raw_internals0(**kwargs) qparams = qreq_.qparams print('[smk_debug] testdata_raw_internals1') words = invindex.words wordflann = invindex.wordflann idx2_vec = invindex.idx2_dvec nAssign = 1 # 1 for database massign_sigma = qparams.massign_sigma massign_alpha = qparams.massign_alpha massign_equal_weights = qparams.massign_equal_weights # TODO: Extract args from function via inspect _dbargs = (wordflann, words, idx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) (wx2_idxs, wx2_dmaws, idx2_wxs) = smk_index.assign_to_words_(*_dbargs) invindex.wx2_idxs = wx2_idxs invindex.wx2_dmaws = wx2_dmaws invindex.idx2_wxs = idx2_wxs return ibs, annots_df, daids, qaids, invindex, wx2_idxs, qparams
def testdata_raw_internals1(**kwargs): from ibeis.algo.hots.smk import smk_debug ibs, annots_df, daids, qaids, invindex, qreq_ = smk_debug.testdata_raw_internals0( **kwargs) qparams = qreq_.qparams print('[smk_debug] testdata_raw_internals1') words = invindex.words wordflann = invindex.wordflann idx2_vec = invindex.idx2_dvec nAssign = 1 # 1 for database massign_sigma = qparams.massign_sigma massign_alpha = qparams.massign_alpha massign_equal_weights = qparams.massign_equal_weights # TODO: Extract args from function via inspect _dbargs = (wordflann, words, idx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) (wx2_idxs, wx2_dmaws, idx2_wxs) = smk_index.assign_to_words_(*_dbargs) invindex.wx2_idxs = wx2_idxs invindex.wx2_dmaws = wx2_dmaws invindex.idx2_wxs = idx2_wxs return ibs, annots_df, daids, qaids, invindex, wx2_idxs, qparams
def testdata_sccw_sum(**kwargs): from ibeis.algo.hots.smk import smk_debug from ibeis.algo.hots.smk import smk_index ibs, annots_df, qaid, invindex, qparams = smk_debug.testdata_query_repr( **kwargs) aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh nAssign = qparams.nAssign massign_sigma = qparams.massign_sigma massign_alpha = qparams.massign_alpha massign_equal_weights = qparams.massign_equal_weights nAssign = qparams.nAssign wx2_idf = invindex.wx2_idf words = invindex.words wordflann = invindex.wordflann #qfx2_vec = annots_df['vecs'][qaid].values qfx2_vec = annots_df['vecs'][qaid] # Assign query to (multiple) words _wx2_qfxs, wx2_qmaws, qfx2_wxs = smk_index.assign_to_words_( wordflann, words, qfx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) # Hack to make implementing asmk easier, very redundant qfx2_aid = np.array([qaid] * len(qfx2_wxs), dtype=hstypes.INTEGER_TYPE) qfx2_qfx = np.arange(len(qfx2_vec)) # Compute query residuals wx2_qrvecs, wx2_qaids, wx2_qfxs, wx2_qmaws, wx2_flags = smk_index.compute_residuals_( words, _wx2_qfxs, wx2_qmaws, qfx2_vec, qfx2_aid, qfx2_qfx, aggregate) # Compute query sccw if ut.VERBOSE: print('[smk_index] Query TF smk_alpha=%r, smk_thresh=%r' % (smk_alpha, smk_thresh)) wx_sublist = np.array(wx2_qrvecs.keys(), dtype=hstypes.INDEX_TYPE) idf_list = [wx2_idf[wx] for wx in wx_sublist] rvecs_list = [wx2_qrvecs[wx] for wx in wx_sublist] qmaws_list = [wx2_qmaws[wx] for wx in wx_sublist] qflags_list = [wx2_flags[wx] for wx in wx_sublist] return idf_list, rvecs_list, qflags_list, qmaws_list, smk_alpha, smk_thresh
def testdata_sccw_sum(**kwargs): from ibeis.algo.hots.smk import smk_debug from ibeis.algo.hots.smk import smk_index ibs, annots_df, qaid, invindex, qparams = smk_debug.testdata_query_repr(**kwargs) aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh nAssign = qparams.nAssign massign_sigma = qparams.massign_sigma massign_alpha = qparams.massign_alpha massign_equal_weights = qparams.massign_equal_weights nAssign = qparams.nAssign wx2_idf = invindex.wx2_idf words = invindex.words wordflann = invindex.wordflann #qfx2_vec = annots_df['vecs'][qaid].values qfx2_vec = annots_df['vecs'][qaid] # Assign query to (multiple) words _wx2_qfxs, wx2_qmaws, qfx2_wxs = smk_index.assign_to_words_( wordflann, words, qfx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) # Hack to make implementing asmk easier, very redundant qfx2_aid = np.array([qaid] * len(qfx2_wxs), dtype=hstypes.INTEGER_TYPE) qfx2_qfx = np.arange(len(qfx2_vec)) # Compute query residuals wx2_qrvecs, wx2_qaids, wx2_qfxs, wx2_qmaws, wx2_flags = smk_index.compute_residuals_( words, _wx2_qfxs, wx2_qmaws, qfx2_vec, qfx2_aid, qfx2_qfx, aggregate) # Compute query sccw if ut.VERBOSE: print('[smk_index] Query TF smk_alpha=%r, smk_thresh=%r' % (smk_alpha, smk_thresh)) wx_sublist = np.array(wx2_qrvecs.keys(), dtype=hstypes.INDEX_TYPE) idf_list = [wx2_idf[wx] for wx in wx_sublist] rvecs_list = [wx2_qrvecs[wx] for wx in wx_sublist] qmaws_list = [wx2_qmaws[wx] for wx in wx_sublist] qflags_list = [wx2_flags[wx] for wx in wx_sublist] return idf_list, rvecs_list, qflags_list, qmaws_list, smk_alpha, smk_thresh
def compute_data_internals_(invindex, qparams, memtrack=None, delete_rawvecs=True): """ Builds each of the inverted index internals. invindex (InvertedIndex): object for fast vocab lookup qparams (QueryParams): hyper-parameters memtrack (None): delete_rawvecs (bool): Returns: None Example: >>> from ibeis.algo.hots.smk.smk_repr import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> ibs, annots_df, daids, qaids, invindex, qreq_ = smk_debug.testdata_raw_internals0() >>> compute_data_internals_(invindex, qreq_.qparams) Ignore: idx2_vec = idx2_dvec wx2_maws = _wx2_maws # NOQA """ # Get information #if memtrack is None: # memtrack = ut.MemoryTracker('[DATA INTERNALS ENTRY]') #memtrack.report('[DATA INTERNALS1]') # aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh # massign_alpha = qparams.massign_alpha massign_sigma = qparams.massign_sigma massign_equal_weights = qparams.massign_equal_weights # vocab_weighting = qparams.vocab_weighting # nAssign = 1 # single assignment for database side idx2_vec = invindex.idx2_dvec idx2_dfx = invindex.idx2_dfx idx2_daid = invindex.idx2_daid daids = invindex.daids wordflann = invindex.wordflann words = invindex.words daid2_label = invindex.daid2_label wx_series = np.arange(len(words)) #memtrack.track_obj(idx2_vec, 'idx2_vec') if not ut.QUIET: print('[smk_repr] compute_data_internals_') if ut.VERBOSE: print('[smk_repr] * len(daids) = %r' % (len(daids),)) print('[smk_repr] * len(words) = %r' % (len(words),)) print('[smk_repr] * len(idx2_vec) = %r' % (len(idx2_vec),)) print('[smk_repr] * aggregate = %r' % (aggregate,)) print('[smk_repr] * smk_alpha = %r' % (smk_alpha,)) print('[smk_repr] * smk_thresh = %r' % (smk_thresh,)) # Try to use the cache #cfgstr = ut.hashstr_arr(words, 'words') + qparams.feat_cfgstr #cachekw = dict( #cfgstr=cfgstr, #appname='smk_test' #) #invindex_cache = ut.Cacher('inverted_index', **cachekw) #try: # raise IOError('cache is off') # #cachetup = invindex_cache.load() # #(idx2_wxs, wx2_idxs, wx2_idf, wx2_drvecs, wx2_aids, wx2_fxs, wx2_maws, daid2_sccw) = cachetup # invindex.idx2_dvec = None #except IOError as ex: # Database word assignments (perform single assignment on database side) wx2_idxs, _wx2_maws, idx2_wxs = smk_index.assign_to_words_( wordflann, words, idx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) if ut.DEBUG2: assert len(idx2_wxs) == len(idx2_vec) assert len(wx2_idxs.keys()) == len(_wx2_maws.keys()) assert len(wx2_idxs.keys()) <= len(words) try: assert len(wx2_idxs.keys()) == len(words) except AssertionError as ex: ut.printex(ex, iswarning=True) # Database word inverse-document-frequency (idf weights) wx2_idf = smk_index.compute_word_idf_( wx_series, wx2_idxs, idx2_daid, daids, daid2_label, vocab_weighting, verbose=True) if ut.DEBUG2: assert len(wx2_idf) == len(wx2_idf.keys()) # Compute (normalized) residual vectors and inverse mappings wx2_drvecs, wx2_aids, wx2_fxs, wx2_dmaws, wx2_dflags = smk_index.compute_residuals_( words, wx2_idxs, _wx2_maws, idx2_vec, idx2_daid, idx2_dfx, aggregate, verbose=True) if not ut.QUIET: print('[smk_repr] unloading idx2_vec') if delete_rawvecs: # Try to save some memory del _wx2_maws invindex.idx2_dvec = None del idx2_vec # Compute annotation normalization factor daid2_sccw = smk_index.compute_data_sccw_( idx2_daid, wx2_drvecs, wx2_dflags, wx2_aids, wx2_idf, wx2_dmaws, smk_alpha, smk_thresh, verbose=True) # Cache save #cachetup = (idx2_wxs, wx2_idxs, wx2_idf, wx2_drvecs, wx2_aids, wx2_fxs, wx2_dmaws, daid2_sccw) #invindex_cache.save(cachetup) # Store information invindex.idx2_wxs = idx2_wxs # stacked index -> word indexes (might not be needed) invindex.wx2_idxs = wx2_idxs invindex.wx2_idf = wx2_idf invindex.wx2_drvecs = wx2_drvecs invindex.wx2_dflags = wx2_dflags # flag nan rvecs invindex.wx2_aids = wx2_aids # needed for asmk invindex.wx2_fxs = wx2_fxs # needed for asmk invindex.wx2_dmaws = wx2_dmaws # needed for awx2_mawssmk invindex.daid2_sccw = daid2_sccw #memtrack.report('[DATA INTERNALS3]') if ut.DEBUG2: from ibeis.algo.hots.smk import smk_debug smk_debug.check_invindex_wx2(invindex)
def new_qindex(annots_df, qaid, invindex, qparams): r""" Gets query read for computations Args: annots_df (DataFrameProxy): pandas-like data interface qaid (int): query annotation id invindex (InvertedIndex): inverted index object qparams (QueryParams): query parameters object Returns: qindex: named tuple containing query information CommandLine: python -m ibeis.algo.hots.smk.smk_repr --test-new_qindex Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.smk.smk_repr import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> ibs, annots_df, qaid, invindex, qparams = smk_debug.testdata_query_repr(db='PZ_Mothers', nWords=128000) >>> qindex = new_qindex(annots_df, qaid, invindex, qparams) >>> assert smk_debug.check_wx2_rvecs(qindex.wx2_qrvecs), 'has nan' >>> smk_debug.invindex_dbgstr(invindex) Ignore:: idx2_vec = qfx2_vec idx2_aid = qfx2_aid idx2_fx = qfx2_qfx wx2_idxs = _wx2_qfxs wx2_maws = _wx2_maws from ibeis.algo.hots.smk import smk_repr import utool as ut ut.rrrr() print(ut.make_default_docstr(smk_repr.new_qindex)) """ # TODO: Precompute and lookup residuals and assignments if not ut.QUIET: print('[smk_repr] Query Repr qaid=%r' % (qaid,)) # nAssign = qparams.nAssign massign_alpha = qparams.massign_alpha massign_sigma = qparams.massign_sigma massign_equal_weights = qparams.massign_equal_weights # aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh # wx2_idf = invindex.wx2_idf words = invindex.words wordflann = invindex.wordflann #qfx2_vec = annots_df['vecs'][qaid] # TODO: remove all mention of annot_df and ensure that qparams is passed corectly to config2_ qfx2_vec = annots_df.ibs.get_annot_vecs(qaid, config2_=qparams) #------------------- # Assign query to (multiple) words #------------------- _wx2_qfxs, _wx2_maws, qfx2_wxs = smk_index.assign_to_words_( wordflann, words, qfx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) # Hack to make implementing asmk easier, very redundant qfx2_aid = np.array([qaid] * len(qfx2_wxs), dtype=hstypes.INTEGER_TYPE) qfx2_qfx = np.arange(len(qfx2_vec)) #------------------- # Compute query residuals #------------------- wx2_qrvecs, wx2_qaids, wx2_qfxs, wx2_maws, wx2_qflags = smk_index.compute_residuals_( words, _wx2_qfxs, _wx2_maws, qfx2_vec, qfx2_aid, qfx2_qfx, aggregate) # each value in wx2_ dicts is a list with len equal to the number of rvecs if ut.VERBOSE: print('[smk_repr] Query SCCW smk_alpha=%r, smk_thresh=%r' % (smk_alpha, smk_thresh)) #------------------- # Compute query sccw #------------------- wx_sublist = np.array(wx2_qrvecs.keys(), dtype=hstypes.INDEX_TYPE) idf_list = [wx2_idf[wx] for wx in wx_sublist] rvecs_list = [wx2_qrvecs[wx] for wx in wx_sublist] maws_list = [wx2_maws[wx] for wx in wx_sublist] flags_list = [wx2_qflags[wx] for wx in wx_sublist] query_sccw = smk_scoring.sccw_summation(rvecs_list, flags_list, idf_list, maws_list, smk_alpha, smk_thresh) try: assert query_sccw > 0, 'query_sccw=%r is not positive!' % (query_sccw,) except Exception as ex: ut.printex(ex) raise #------------------- # Build query representationm class/tuple #------------------- if DEBUG_SMK: from ibeis.algo.hots.smk import smk_debug qfx2_vec = annots_df['vecs'][qaid] assert smk_debug.check_wx2_rvecs2( invindex, wx2_qrvecs, wx2_qfxs, qfx2_vec), 'bad qindex' qindex = QueryIndex(wx2_qrvecs, wx2_qflags, wx2_maws, wx2_qaids, wx2_qfxs, query_sccw) return qindex
def compute_data_internals_(invindex, qparams, memtrack=None, delete_rawvecs=True): """ Builds each of the inverted index internals. invindex (InvertedIndex): object for fast vocab lookup qparams (QueryParams): hyper-parameters memtrack (None): delete_rawvecs (bool): Returns: None Example: >>> from ibeis.algo.hots.smk.smk_repr import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> ibs, annots_df, daids, qaids, invindex, qreq_ = smk_debug.testdata_raw_internals0() >>> compute_data_internals_(invindex, qreq_.qparams) Ignore: idx2_vec = idx2_dvec wx2_maws = _wx2_maws # NOQA """ # Get information #if memtrack is None: # memtrack = ut.MemoryTracker('[DATA INTERNALS ENTRY]') #memtrack.report('[DATA INTERNALS1]') # aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh # massign_alpha = qparams.massign_alpha massign_sigma = qparams.massign_sigma massign_equal_weights = qparams.massign_equal_weights # vocab_weighting = qparams.vocab_weighting # nAssign = 1 # single assignment for database side idx2_vec = invindex.idx2_dvec idx2_dfx = invindex.idx2_dfx idx2_daid = invindex.idx2_daid daids = invindex.daids wordflann = invindex.wordflann words = invindex.words daid2_label = invindex.daid2_label wx_series = np.arange(len(words)) #memtrack.track_obj(idx2_vec, 'idx2_vec') if not ut.QUIET: print('[smk_repr] compute_data_internals_') if ut.VERBOSE: print('[smk_repr] * len(daids) = %r' % (len(daids), )) print('[smk_repr] * len(words) = %r' % (len(words), )) print('[smk_repr] * len(idx2_vec) = %r' % (len(idx2_vec), )) print('[smk_repr] * aggregate = %r' % (aggregate, )) print('[smk_repr] * smk_alpha = %r' % (smk_alpha, )) print('[smk_repr] * smk_thresh = %r' % (smk_thresh, )) # Try to use the cache #cfgstr = ut.hashstr_arr(words, 'words') + qparams.feat_cfgstr #cachekw = dict( #cfgstr=cfgstr, #appname='smk_test' #) #invindex_cache = ut.Cacher('inverted_index', **cachekw) #try: # raise IOError('cache is off') # #cachetup = invindex_cache.load() # #(idx2_wxs, wx2_idxs, wx2_idf, wx2_drvecs, wx2_aids, wx2_fxs, wx2_maws, daid2_sccw) = cachetup # invindex.idx2_dvec = None #except IOError as ex: # Database word assignments (perform single assignment on database side) wx2_idxs, _wx2_maws, idx2_wxs = smk_index.assign_to_words_( wordflann, words, idx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) if ut.DEBUG2: assert len(idx2_wxs) == len(idx2_vec) assert len(wx2_idxs.keys()) == len(_wx2_maws.keys()) assert len(wx2_idxs.keys()) <= len(words) try: assert len(wx2_idxs.keys()) == len(words) except AssertionError as ex: ut.printex(ex, iswarning=True) # Database word inverse-document-frequency (idf weights) wx2_idf = smk_index.compute_word_idf_(wx_series, wx2_idxs, idx2_daid, daids, daid2_label, vocab_weighting, verbose=True) if ut.DEBUG2: assert len(wx2_idf) == len(wx2_idf.keys()) # Compute (normalized) residual vectors and inverse mappings wx2_drvecs, wx2_aids, wx2_fxs, wx2_dmaws, wx2_dflags = smk_index.compute_residuals_( words, wx2_idxs, _wx2_maws, idx2_vec, idx2_daid, idx2_dfx, aggregate, verbose=True) if not ut.QUIET: print('[smk_repr] unloading idx2_vec') if delete_rawvecs: # Try to save some memory del _wx2_maws invindex.idx2_dvec = None del idx2_vec # Compute annotation normalization factor daid2_sccw = smk_index.compute_data_sccw_(idx2_daid, wx2_drvecs, wx2_dflags, wx2_aids, wx2_idf, wx2_dmaws, smk_alpha, smk_thresh, verbose=True) # Cache save #cachetup = (idx2_wxs, wx2_idxs, wx2_idf, wx2_drvecs, wx2_aids, wx2_fxs, wx2_dmaws, daid2_sccw) #invindex_cache.save(cachetup) # Store information invindex.idx2_wxs = idx2_wxs # stacked index -> word indexes (might not be needed) invindex.wx2_idxs = wx2_idxs invindex.wx2_idf = wx2_idf invindex.wx2_drvecs = wx2_drvecs invindex.wx2_dflags = wx2_dflags # flag nan rvecs invindex.wx2_aids = wx2_aids # needed for asmk invindex.wx2_fxs = wx2_fxs # needed for asmk invindex.wx2_dmaws = wx2_dmaws # needed for awx2_mawssmk invindex.daid2_sccw = daid2_sccw #memtrack.report('[DATA INTERNALS3]') if ut.DEBUG2: from ibeis.algo.hots.smk import smk_debug smk_debug.check_invindex_wx2(invindex)
def new_qindex(annots_df, qaid, invindex, qparams): r""" Gets query read for computations Args: annots_df (DataFrameProxy): pandas-like data interface qaid (int): query annotation id invindex (InvertedIndex): inverted index object qparams (QueryParams): query parameters object Returns: qindex: named tuple containing query information CommandLine: python -m ibeis.algo.hots.smk.smk_repr --test-new_qindex Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.smk.smk_repr import * # NOQA >>> from ibeis.algo.hots.smk import smk_debug >>> ibs, annots_df, qaid, invindex, qparams = smk_debug.testdata_query_repr(db='PZ_Mothers', nWords=128000) >>> qindex = new_qindex(annots_df, qaid, invindex, qparams) >>> assert smk_debug.check_wx2_rvecs(qindex.wx2_qrvecs), 'has nan' >>> smk_debug.invindex_dbgstr(invindex) Ignore:: idx2_vec = qfx2_vec idx2_aid = qfx2_aid idx2_fx = qfx2_qfx wx2_idxs = _wx2_qfxs wx2_maws = _wx2_maws from ibeis.algo.hots.smk import smk_repr import utool as ut ut.rrrr() print(ut.make_default_docstr(smk_repr.new_qindex)) """ # TODO: Precompute and lookup residuals and assignments if not ut.QUIET: print('[smk_repr] Query Repr qaid=%r' % (qaid, )) # nAssign = qparams.nAssign massign_alpha = qparams.massign_alpha massign_sigma = qparams.massign_sigma massign_equal_weights = qparams.massign_equal_weights # aggregate = qparams.aggregate smk_alpha = qparams.smk_alpha smk_thresh = qparams.smk_thresh # wx2_idf = invindex.wx2_idf words = invindex.words wordflann = invindex.wordflann #qfx2_vec = annots_df['vecs'][qaid] # TODO: remove all mention of annot_df and ensure that qparams is passed corectly to config2_ qfx2_vec = annots_df.ibs.get_annot_vecs(qaid, config2_=qparams) #------------------- # Assign query to (multiple) words #------------------- _wx2_qfxs, _wx2_maws, qfx2_wxs = smk_index.assign_to_words_( wordflann, words, qfx2_vec, nAssign, massign_alpha, massign_sigma, massign_equal_weights) # Hack to make implementing asmk easier, very redundant qfx2_aid = np.array([qaid] * len(qfx2_wxs), dtype=hstypes.INTEGER_TYPE) qfx2_qfx = np.arange(len(qfx2_vec)) #------------------- # Compute query residuals #------------------- wx2_qrvecs, wx2_qaids, wx2_qfxs, wx2_maws, wx2_qflags = smk_index.compute_residuals_( words, _wx2_qfxs, _wx2_maws, qfx2_vec, qfx2_aid, qfx2_qfx, aggregate) # each value in wx2_ dicts is a list with len equal to the number of rvecs if ut.VERBOSE: print('[smk_repr] Query SCCW smk_alpha=%r, smk_thresh=%r' % (smk_alpha, smk_thresh)) #------------------- # Compute query sccw #------------------- wx_sublist = np.array(wx2_qrvecs.keys(), dtype=hstypes.INDEX_TYPE) idf_list = [wx2_idf[wx] for wx in wx_sublist] rvecs_list = [wx2_qrvecs[wx] for wx in wx_sublist] maws_list = [wx2_maws[wx] for wx in wx_sublist] flags_list = [wx2_qflags[wx] for wx in wx_sublist] query_sccw = smk_scoring.sccw_summation(rvecs_list, flags_list, idf_list, maws_list, smk_alpha, smk_thresh) try: assert query_sccw > 0, 'query_sccw=%r is not positive!' % ( query_sccw, ) except Exception as ex: ut.printex(ex) raise #------------------- # Build query representationm class/tuple #------------------- if DEBUG_SMK: from ibeis.algo.hots.smk import smk_debug qfx2_vec = annots_df['vecs'][qaid] assert smk_debug.check_wx2_rvecs2(invindex, wx2_qrvecs, wx2_qfxs, qfx2_vec), 'bad qindex' qindex = QueryIndex(wx2_qrvecs, wx2_qflags, wx2_maws, wx2_qaids, wx2_qfxs, query_sccw) return qindex