def example_1d(): from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic from ibvpy.fets.fets1D.fets1D2l import FETS1D2L from ibvpy.fets.fets1D.fets1D2l3u import FETS1D2L3U from ibvpy.fets.fets_ls.fets_crack import FETSCrack fets_eval = FETS1D2L( mats_eval = MATS1DElastic( E = 1. ) ) #, A=1.)) #xfets_eval = fets_eval # use the same element for the enrichment xfets_eval = FETSCrack( parent_fets = fets_eval ) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval ) fe_grid1 = FEGrid( coord_max = ( 4., 0., 0. ), shape = ( 4, ), fets_eval = fets_eval, level = fe_level1 ) enr = True if enr: fe_xdomain = XFESubDomain( domain = fe_domain, fets_eval = xfets_eval, fe_grid_slice = fe_grid1[ '(X - 2) **2 - 0.5 ' ] ) fe_xdomain.deactivate_sliced_elems() print 'elem_dof_map', fe_xdomain.elem_dof_map fe_domain = FEDomain() fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval ) fe_grid1 = FEGrid( coord_max = ( 4 * 3.14, 0., 0. ), shape = ( 8, ), fets_eval = fets_eval, level = fe_level1 ) enr = True if enr: fe_xdomain = XFESubDomain( domain = fe_domain, fets_eval = xfets_eval, fe_grid_slice = fe_grid1[ 'cos(X) - 0.5' ] ) fe_xdomain.deactivate_sliced_elems() print 'elem_dof_map2', fe_xdomain.elem_dof_map
def example_2d(): from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.mats.mats2D import MATS2DPlastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D import FETS2D9Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets_ls.fets_crack import FETSCrack #fets_eval = FETS2D4Q( mats_eval = MATS2DPlastic( E = 1., nu = 0. ) ) fets_eval = FETS2D4Q8U(mats_eval=MATS2DPlastic(E=1., nu=0.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=5, tri_subdivision=1) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(1., 1.), shape=(8, 8), fets_eval=fets_eval, level=fe_level1) #ls_function = lambda X, Y: X - Y - 0.13 ls_function = lambda X, Y: (X - 0.52)**2 + (Y - 0.72)**2 - 0.51**2 bls_function = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.28**2) bls_function2 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.38**2) # design deficits: # - How to define a level set spanned over several fe_grids # (i.e. it is defined over the hierarchy of FESubDomains) # - Patching of subdomains within the FEPatchedGrid (FERefinementGrid) # - What are the compatibility conditions? # - What is the difference between FEGridLeveSetSlice # and FELSDomain? # FELSDomain is associated with a DOTS - Slice is not. # FEGrid has a multidimensional array - elem_grid # it can be accessed through this index. # it is masked by the activity map. The activity map can # be defined using slices and level sets. # the elems array enumerates the elements using the activity map. # in this way, the specialization of grids is available implicitly. # fe_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_grid1, ls_function=ls_function, bls_function=bls_function, ) fe_tip_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_xdomain, ls_function=bls_function, ) # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() fe_xdomain.bls_function = bls_function2 fe_tip_xdomain.ls_function = bls_function2 # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() # # General procedure: # 1) define the level sets with the boundaries # 2) use the bls to identify the tips of the level set # 3) use independent level sets to introduce indpendently junctions. # # get the extended dofs of the bls_elems and constrain it # cdofs = fe_tip_xdomain.elem_xdof_map.flatten() bc_list = [BCDof(var='u', dof=dof, value=0.0) for dof in cdofs] # construct the time stepper ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice( var='u', value=-0.1, dims=[1], slice=fe_grid1[:, 0, :, 0]), BCSlice( var='u', value=0., dims=[0], slice=fe_grid1[:, 0, :, 0]), BCSlice(var='u', value=0., dims=[0, 1], slice=fe_grid1[:, -1, :, -1]) ] + bc_list, rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='sig_app', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # do = 'print' if do == 'print': p = 'state' if p == 'grids': print('fe_xdomain.ls mask') print(fe_xdomain.ls_mask) print('fe_xdomain.idx mask') print(fe_xdomain.idx_mask) print('fe_xdomain.intg mask') print(fe_xdomain.intg_mask) print('fe_xdomain.xelems_mask') print(fe_xdomain.xelems_mask) print('fe_xdomain.xelems_grid_ix') print(fe_xdomain.xelems_grid_ix) print('fe_xdomain.ls_elem_grid') print(fe_xdomain.ls_elem_grid) print('fe_xdomain.ls_ielem_grid') print(fe_xdomain.ls_ielem_grid) print('fe_xdomain.intg_elem_grid') print(fe_xdomain.intg_elem_grid) print('fe_tip_xdomain.ls_mask`') print(fe_tip_xdomain.ls_mask) print('fe_tip_xdomain.intg_mask`') print(fe_tip_xdomain.intg_mask) print('fe_tip_xdomain.idx_mask`') print(fe_tip_xdomain.idx_mask) print('fe_tip_xdomain.xelems_mask') print(fe_tip_xdomain.xelems_mask) print('fe_tip_xdomain.xelems_grid_ix') print(fe_tip_xdomain.xelems_grid_ix) print('fe_tip_xdomain.ls_elem_grid') print(fe_tip_xdomain.ls_elem_grid) print('fe_tip_xdomain.ls_ielems_grid') print(fe_tip_xdomain.ls_ielem_grid) print('fe_tip_xdomain.intg_elem_grid') print(fe_tip_xdomain.intg_elem_grid) if p == 'maps': print('fe_xdomain.elem_dof_map') print(fe_xdomain.elem_dof_map) print('fe_tip_xdomain.elem_dof_map') print(fe_tip_xdomain.elem_dof_map) print('fe_xdomain.elems') print(fe_xdomain.elems) print('fe_tip_xdomain.elems') print(fe_tip_xdomain.elems) print('fe_xdomain.elem_X_map') print(fe_xdomain.elem_X_map) print('fe_tip_xdomain.elem_X_map') print(fe_tip_xdomain.elem_X_map) if p == 'fields': print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print("tip ls_values ", fe_tip_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.ls_intersection_r) print('tip intersection points ', fe_tip_xdomain.ls_intersection_r) print("triangles ", fe_xdomain.dots.rt_triangles) print("vtk points ", fe_xdomain.dots.vtk_X) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('ip_triangles', fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) if p == 'state': # Add the time-loop control print('STATE: initial') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) fe_xdomain.dots.state_array[:] = 25.5 print('state_array 25', fe_xdomain.dots.state_array) fe_tip_xdomain.dots.state_array[:] = 58 bls_function3 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.58**2) fe_xdomain.bls_function = bls_function3 fe_tip_xdomain.ls_function = bls_function3 print('STATE: changed') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) print('state_array 25', fe_xdomain.dots.state_array.shape) print('state_array 25', fe_xdomain.dots.state_array[570:]) print('state_array 58', fe_tip_xdomain.dots.state_array.shape) elif do == 'ui': tloop = TLoop(tstepper=ts, debug=False, tolerance=1e-4, KMAX=3, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
def example_1d(): fets_eval = FETS1D2L3U(mats_eval=MATS1DElastic(E=20.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=2) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(2., 0., 0.), shape=(2, ), fets_eval=fets_eval, level=fe_level1) enr = True if enr: fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, #fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - .75']) fe_xdomain.deactivate_sliced_elems() ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice(var='u', value=-1. / 2., dims=[0], slice=fe_grid1[0, 0]), BCSlice(var='u', value=0., dims=[0], slice=fe_grid1[-1, -1]), ], rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='eps', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop(tstepper=ts, debug=True, tolerance=1e-4, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) #print "elements ",fe_xdomain.elements[0] if enr: print('parent elems ', fe_xdomain.fe_grid_slice.elems) print('parent dofs ', fe_xdomain.fe_grid_slice.dofs) print("dofmap ", fe_xdomain.elem_dof_map) print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.fe_grid_slice.r_i) # print("triangles ", fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset ', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_X ', fe_xdomain.dots.vtk_X) print('vtk triangles ', fe_xdomain.dots.rt_triangles) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()