Example #1
0
    def get_data(self, lims=[5E-6, 295E-6], wantOffset=False):
        if "yoko" in self.scope_type.lower():
            self.read_yoko(wantOffset)
        elif "lecroy" in self.scope_type.lower():
            self.read_lecroy(wantOffset)
        else:
            raise IOError('Unknown scope type.')

        # Smooth out LOG and GOLF data
        if "log" in self.measurement_name.lower() or \
                        "golf" in self.measurement_name.lower():
            window_length = 5.0
            sma = filters.moving_average(self.data, window_length)

            self.data = sma

        # Integrate desired dE/dt waveforms
        if "int" in self.measurement_name.lower():
            self.data = integrators.integrate_cumtrapz(y=self.data,
                                                       x=self.dataTime,
                                                       initial=0)

        self.get_plot(lims)
Example #2
0
    def plot_data_set(self, rs='all', meass='all', lim=20, window=1.0,
                      norm=False):
        #~ mpl.rcdefaults()
        os.chdir('/home/jaime/Documents/ResearchTopics/Publications/Current Reflections/Data Sets/')

        for rss in self.root.iter('return_stroke'):

            r_s = int(rss.find('number').text)

            if rs == -1:
                pass
            elif 'all' in rs.lower():
                pass
            elif r_s == int(rs):
                pass
            else:
                continue

            fileSave = "./DataFiles/%s_data_%s_rs%d.p" % (self.eventNamef,
                                                             self.eventDate,
                                                             r_s)

            data = pickle.load(open(fileSave, "rb"))

            data_only = {}

            if "all" in meass:
                ignore = []
                E = ['E_5', 'E_18', 'E_23', 'E_12F', 'E_12', 'E_NW60',
                     'E_NW100']
                dE = ['dE_1', 'dE_3', 'dE_4', 'dE_5', 'dE_7', 'dE_8', 'dE_9', 'dE_11', 'dE_17', 'dE_25', 'dE_OB']
                intt = ['intE_1', 'intE_3', 'intE_4', 'intE_5', 'intE_7', 'intE_8', 'intE_9', 'intE_11', 'intE_17', 'intE_25', 'intE_OB']

                ignore.extend(intt)
                ignore.extend(E)
                ignore.extend(['II_HI'])
                # ignore.extend(dE)

                for key in data:
                    if key in ignore:
                        pass
                    else:
                        data_only[key] = data[key]

                keys = data_only.keys()
                sort_data = {}

                for i, key in enumerate(keys):
                    value = data[key].ax.get_title().split()

                    if len(value) == 4:
                        s = value[3]
                        ind = s.find('km')

                        if ind > 0:
                            temp = float(value[3][:ind])
                            s = '%d' % (temp*1E3)

                        ind = s.find('m')

                        if ind > 0:
                            s = value[3][:ind]

                        sort_data[key] = float(s)

                    else:
                        s = value[4]
                        ind = s.find('km')

                        if ind > 0:
                            temp = float(value[4][:ind])
                            s = '%d' % (temp*1E3)

                        ind = s.find('m')

                        if ind > 0:
                            s = value[4][:ind]

                        sort_data[key] = float(s)

                sorted_data = sorted(sort_data.items(),
                                     key=operator.itemgetter(1))

                """
                Print all in individual figures
                """
                mpl.rcParams['savefig.directory'] = '/home/jaime/Documents/My Papers/Ongoing/Current Reflections/LaTex/Pictures/Temp/'

                for i in range(len(sorted_data)):

                    fig, ax = plt.subplots(1, 1)

                    #~ fig.suptitle('%s (%s/%s/%s)' % (event, eventDate[:2],eventDate[2:4], eventDate[4:]), fontsize=16)
                    #~ fig.suptitle(event)#, fontsize=16)

                    temp_data = data[sorted_data[i][0]].data

                    # print(sorted_data[i], len(data[sorted_data[i][0]]), len(temp_data), len(data['time']), np.max(temp_data))

                    zoom_lim = [-1, int(lim)]

                    # print(zoom_lim)

                    factor = 1E-3
                    l_width = 2.5

                    if 'dE_' in sorted_data[i][0]:
                        factor = 1E-9
                        l_width = 1.5

                    ax.plot(data[sorted_data[i][0]].dataTime, factor*temp_data,
                            linewidth=l_width)
                    ax.set_title(data[sorted_data[i][0]].ax.get_title())

                    if "ii_hi" in sorted_data[i][0].lower():
                        ylabel = '(kA)'

                    elif "int" in sorted_data[i][0].lower():
                        ylabel = '(kV/m)'

                    elif "de" in sorted_data[i][0].lower():
                        ylabel = '(kV/m/$\mu$s)'

                    elif "e_" in sorted_data[i][0].lower():
                        ylabel = '(kV/m)'

                    else:
                        ylabel = data[sorted_data[i][0]].ax.get_ylabel()

                    if '/us' in ylabel:
                        ylabel = ylabel[:-3] + ylabel[-1]

                    #~ ax.set_ylabel(ylabel)
                    ax.set_xlim(zoom_lim)
                    ax.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator())
                    ax.grid(True, which='both')
                    ax.xaxis.set_tick_params(width=1.5)
                    #~ ax.autoscale(True,'y')
                    #~ ax.set_xlabel('Time ($\mu$s)')

                    p = df.pickerPlot(fig, ax)
                    p.plot()

            else:
                mpl.rcParams['savefig.directory'] = '/home/jaime/Documents/My Papers/Ongoing/Current Reflections/LaTex/Pictures/Temp/'

                x = data[meass].dataTime
                y = data[meass].data

                y_filtered = filters.moving_average(y, window)

                #~ plt.plot(x, y, '-', x,y_filtered, '--')

                norm_factor = 1.0
                factor = 1E-3
                l_width = 2.5

                if 'dE_' in meass:
                    factor = 1E-9
                    l_width = 1.5

                ### Normalize waveform
                if norm:
                    p = df.RelativeTimePlot(x,y)
                    p.plot()

                    plt.show()

                    zero = y[p.zero_ind]

                    p = df.RelativeTimePlot(x, y)
                    p.plot()

                    plt.show()

                    peak = y[p.zero_ind]

                    norm_factor = float(peak - zero)*factor

                fig = plt.figure()
                ax = fig.add_subplot(111)

                zoom_lim = [-1, int(lim)]

                title = '%s (RS #%d)' % (self.eventName, r_s)
                # title = '%s (ICC)' % self.eventName
                # title = data[meass].ax.get_title()

                # if factor == 1E-3:
                #     ylabel = '(k%s' % (data[meass].ax.get_ylabel()[1:])
                # else:
                #     ylabel = data[meass].ax.get_ylabel()

                xlabel = 'Time ($\mu$s)'

                ax.plot(x*1e6, y_filtered*factor/norm_factor, linewidth=l_width)
                ax.set_title(title)
                #~ ax.set_ylabel(ylabel)
                #~ ax.set_xlabel(xlabel)
                ax.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator())
                ax.grid(True, which='both')
                ax.xaxis.set_tick_params(width=1.5)
                #~ ax.autoscale(True,'y')
                ax.set_xlim(zoom_lim)
                #~ ax.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator())

                p = df.pickerPlot(fig, ax)
                p.plot()

            plt.show()
for root, dir, file in os.walk(parent):
    if root == parent:
        files = file

for file in files:
    print(file)
    data = pickle.load(open(parent+file, 'rb'))['II_HI']
    t = data.dataTime * 1E-6
    i = data.data

    __, di, __ = diff.differentiate(t, i)

    i = i / np.max(i)
    di = di / np.max(di)

    di_filtered = filters.moving_average(di)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(t, i, t, di_filtered)
    ax.set_title(file[0:6] + '_'+ file[-8:-5] + ' - Normalized and filtered dI/dt (5 pt MA)')
    p = df.pickerPlot(fig, ax)
    p.plot()

    fig1 = plt.figure()
    ax1 = fig1.add_subplot(111)
    ax1.plot(t, i, t, di)
    ax1.set_title(file[0:6] + '_'+ file[-8:-5] + '- Normalized raw data')
    p1 = df.pickerPlot(fig1, ax1)
    p1.plot()
    plt.show()