Example #1
0
def test_splitter():
    m = pyo.ConcreteModel()
    m.fs = idaes.core.FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = iapws95.Iapws95ParameterBlock()
    m.fs.unit = HelmSplitter(default={
        "property_package": m.fs.properties,
        "outlet_list": ["o1", "o2", "o3"]
    })

    Fin = 1e4  # mol/s
    hin = 4000  # J/mol
    Pin = 101325  # Pa

    m.fs.unit.inlet.flow_mol[0].fix(Fin)
    m.fs.unit.inlet.enth_mol[0].fix(hin)
    m.fs.unit.inlet.pressure[0].fix(Pin)
    m.fs.unit.split_fraction[0, "o2"] = 0.3
    m.fs.unit.split_fraction[0, "o3"] = 0.2

    m.fs.unit.initialize()

    assert pyo.value(m.fs.unit.o1.flow_mol[0]) == pytest.approx(1e4 * 0.5,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o2.flow_mol[0]) == pytest.approx(1e4 * 0.3,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o3.flow_mol[0]) == pytest.approx(1e4 * 0.2,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o1.pressure[0]) == pytest.approx(101325,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o2.pressure[0]) == pytest.approx(101325,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o3.pressure[0]) == pytest.approx(101325,
                                                                rel=1e-7)
    assert pyo.value(m.fs.unit.o1.enth_mol[0]) == pytest.approx(4000, rel=1e-7)
    assert pyo.value(m.fs.unit.o2.enth_mol[0]) == pytest.approx(4000, rel=1e-7)
    assert pyo.value(m.fs.unit.o3.enth_mol[0]) == pytest.approx(4000, rel=1e-7)
Example #2
0
    def build(self):
        super().build()
        config = self.config
        unit_cfg = {  # general unit model config
            "dynamic": config.dynamic,
            "has_holdup": config.has_holdup,
            "property_package": config.property_package,
            "property_package_args": config.property_package_args,
        }
        ni = self.config.num_parallel_inlet_stages
        inlet_idx = self.inlet_stage_idx = pyo.RangeSet(ni)

        thrtl_cfg = unit_cfg.copy()
        thrtl_cfg["valve_function"] = self.config.throttle_valve_function
        thrtl_cfg["valve_function_callback"] = \
            self.config.throttle_valve_function_callback

        # Adding unit models
        # ------------------------

        # Splitter to inlet that splits main flow into parallel flows for
        # paritial arc admission to the turbine
        self.inlet_split = HelmSplitter(default=self._split_cfg(unit_cfg, ni))
        self.throttle_valve = SteamValve(inlet_idx, default=thrtl_cfg)
        self.inlet_stage = HelmTurbineInletStage(inlet_idx, default=unit_cfg)
        # mixer to combine the parallel flows back together
        self.inlet_mix = HelmMixer(default=self._mix_cfg(unit_cfg, ni))
        # add turbine sections.
        # inlet stage -> hp stages -> ip stages -> lp stages -> outlet stage
        self.hp_stages = HelmTurbineStage(pyo.RangeSet(config.num_hp),
                                          default=unit_cfg)
        self.ip_stages = HelmTurbineStage(pyo.RangeSet(config.num_ip),
                                          default=unit_cfg)
        self.lp_stages = HelmTurbineStage(pyo.RangeSet(config.num_lp),
                                          default=unit_cfg)
        self.outlet_stage = HelmTurbineOutletStage(default=unit_cfg)

        for i in self.hp_stages:
            self.hp_stages[i].ratioP.fix()
            self.hp_stages[i].efficiency_isentropic.fix()
        for i in self.ip_stages:
            self.ip_stages[i].ratioP.fix()
            self.ip_stages[i].efficiency_isentropic.fix()
        for i in self.lp_stages:
            self.lp_stages[i].ratioP.fix()
            self.lp_stages[i].efficiency_isentropic.fix()

        # Then make splitter config.  If number of outlets is specified
        # make a specific config, otherwise use default with 2 outlets
        s_sfg_default = self._split_cfg(unit_cfg, 2)
        hp_splt_cfg = {}
        ip_splt_cfg = {}
        lp_splt_cfg = {}
        # Now to finish up if there are more than two outlets, set that
        for i, v in config.hp_split_num_outlets.items():
            hp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        for i, v in config.ip_split_num_outlets.items():
            ip_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        for i, v in config.lp_split_num_outlets.items():
            lp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        # put in splitters for turbine steam extractions
        if config.hp_split_locations:
            self.hp_split = HelmSplitter(config.hp_split_locations,
                                         default=s_sfg_default,
                                         initialize=hp_splt_cfg)
        else:
            self.hp_split = {}
        if config.ip_split_locations:
            self.ip_split = HelmSplitter(config.ip_split_locations,
                                         default=s_sfg_default,
                                         initialize=ip_splt_cfg)
        else:
            self.ip_split = {}
        if config.lp_split_locations:
            self.lp_split = HelmSplitter(config.lp_split_locations,
                                         default=s_sfg_default,
                                         initialize=lp_splt_cfg)
        else:
            self.lp_split = {}
        # Done with unit models.  Adding Arcs (streams).
        # ------------------------------------------------

        # First up add streams in the inlet section
        def _split_to_rule(b, i):
            return {
                "source": getattr(self.inlet_split, "outlet_{}".format(i)),
                "destination": self.throttle_valve[i].inlet,
            }

        def _valve_to_rule(b, i):
            return {
                "source": self.throttle_valve[i].outlet,
                "destination": self.inlet_stage[i].inlet,
            }

        def _inlet_to_rule(b, i):
            return {
                "source": self.inlet_stage[i].outlet,
                "destination": getattr(self.inlet_mix, "inlet_{}".format(i)),
            }

        self.stream_throttle_inlet = Arc(inlet_idx, rule=_split_to_rule)
        self.stream_throttle_outlet = Arc(inlet_idx, rule=_valve_to_rule)
        self.stream_inlet_mix_inlet = Arc(inlet_idx, rule=_inlet_to_rule)

        # There are three sections HP, IP, and LP which all have the same sort
        # of internal connctions, so the functions below provide some generic
        # capcbilities for adding the internal Arcs (streams).
        def _arc_indexes(nstages, index_set, discon, splits):
            """
            This takes the index set of all possible streams in a turbine
            section and throws out arc indexes for stages that are disconnected
            and arc indexes that are not needed because there is no splitter
            after a stage.

            Args:
                nstages (int): Number of stages in section
                index_set (Set): Index set for arcs in the section
                discon (list): Disconnected stages in the section
                splits (list): Spliter locations
            """
            sr = set()  # set of things to remove from the Arc index set
            for i in index_set:
                if (i[0] in discon or i[0] == nstages) and i[0] in splits:
                    # don't connect stage i to next remove stream after split
                    sr.add((i[0], 2))
                elif (i[0] in discon
                      or i[0] == nstages) and i[0] not in splits:
                    # no splitter and disconnect so remove both streams
                    sr.add((i[0], 1))
                    sr.add((i[0], 2))
                elif i[0] not in splits:
                    # no splitter and not disconnected so just second stream
                    sr.add((i[0], 2))
                else:
                    # has splitter so need both streams don't remove anything
                    pass
            for i in sr:  # remove the unneeded Arc indexes
                index_set.remove(i)

        def _arc_rule(turbines, splitters):
            """
            This creates a rule function for arcs in a turbine section. When
            this is used, the indexes for nonexistant stream will have already
            been removed, so any indexes the rule will get should have a stream
            associated.

            Args:
                turbines (TurbineStage): Indexed block with turbine section stages
                splitters (Separator): Indexed block of splitters
            """
            def _rule(b, i, j):
                if i in splitters and j == 1:  # stage to splitter
                    return {
                        "source": turbines[i].outlet,
                        "destination": splitters[i].inlet,
                    }
                elif j == 2:  # splitter to next stage
                    return {
                        "source": splitters[i].outlet_1,
                        "destination": turbines[i + 1].inlet,
                    }
                else:  # no splitter, stage to next stage
                    return {
                        "source": turbines[i].outlet,
                        "destination": turbines[i + 1].inlet,
                    }

            return _rule

        # Create initial arcs index sets with all possible streams
        self.hp_stream_idx = pyo.Set(initialize=self.hp_stages.index_set() *
                                     [1, 2])
        self.ip_stream_idx = pyo.Set(initialize=self.ip_stages.index_set() *
                                     [1, 2])
        self.lp_stream_idx = pyo.Set(initialize=self.lp_stages.index_set() *
                                     [1, 2])

        # Throw out unneeded streams for disconnected stages or no splitter
        _arc_indexes(
            config.num_hp,
            self.hp_stream_idx,
            config.hp_disconnect,
            config.hp_split_locations,
        )
        _arc_indexes(
            config.num_ip,
            self.ip_stream_idx,
            config.ip_disconnect,
            config.ip_split_locations,
        )
        _arc_indexes(
            config.num_lp,
            self.lp_stream_idx,
            config.lp_disconnect,
            config.lp_split_locations,
        )

        # Create connections internal to each turbine section (hp, ip, and lp)
        self.hp_stream = Arc(self.hp_stream_idx,
                             rule=_arc_rule(self.hp_stages, self.hp_split))
        self.ip_stream = Arc(self.ip_stream_idx,
                             rule=_arc_rule(self.ip_stages, self.ip_split))
        self.lp_stream = Arc(self.lp_stream_idx,
                             rule=_arc_rule(self.lp_stages, self.lp_split))

        # Connect hp section to ip section unless its a disconnect location
        last_hp = config.num_hp
        if 0 not in config.ip_disconnect and last_hp not in config.hp_disconnect:
            # Not disconnected stage so add stream, depending on splitter existance
            if last_hp in config.hp_split_locations:  # connect splitter to ip
                self.hp_to_ip_stream = Arc(
                    source=self.hp_split[last_hp].outlet_1,
                    destination=self.ip_stages[1].inlet,
                )
            else:  # connect last hp to ip
                self.hp_to_ip_stream = Arc(
                    source=self.hp_stages[last_hp].outlet,
                    destination=self.ip_stages[1].inlet,
                )
        # Connect ip section to lp section unless its a disconnect location
        last_ip = config.num_ip
        if 0 not in config.lp_disconnect and last_ip not in config.ip_disconnect:
            if last_ip in config.ip_split_locations:  # connect splitter to ip
                self.ip_to_lp_stream = Arc(
                    source=self.ip_split[last_ip].outlet_1,
                    destination=self.lp_stages[1].inlet,
                )
            else:  # connect last hp to ip
                self.ip_to_lp_stream = Arc(
                    source=self.ip_stages[last_ip].outlet,
                    destination=self.lp_stages[1].inlet,
                )
        # Connect inlet stage to hp section
        #   not allowing disconnection of inlet and first regular hp stage
        if 0 in config.hp_split_locations:
            # connect inlet mix to splitter and splitter to hp section
            self.inlet_to_splitter_stream = Arc(
                source=self.inlet_mix.outlet,
                destination=self.hp_split[0].inlet)
            self.splitter_to_hp_stream = Arc(
                source=self.hp_split[0].outlet_1,
                destination=self.hp_stages[1].inlet)
        else:  # connect mixer to first hp turbine stage
            self.inlet_to_hp_stream = Arc(source=self.inlet_mix.outlet,
                                          destination=self.hp_stages[1].inlet)

        self.power = pyo.Var(self.flowsheet().time,
                             initialize=-1e8,
                             doc="power (W)")

        @self.Constraint(self.flowsheet().time)
        def power_eqn(b, t):
            return (b.power[t] == b.outlet_stage.control_volume.work[t] *
                    b.outlet_stage.efficiency_mech +
                    sum(b.inlet_stage[i].control_volume.work[t] *
                        b.inlet_stage[i].efficiency_mech
                        for i in b.inlet_stage) +
                    sum(b.hp_stages[i].control_volume.work[t] *
                        b.hp_stages[i].efficiency_mech for i in b.hp_stages) +
                    sum(b.ip_stages[i].control_volume.work[t] *
                        b.ip_stages[i].efficiency_mech for i in b.ip_stages) +
                    sum(b.lp_stages[i].control_volume.work[t] *
                        b.lp_stages[i].efficiency_mech for i in b.lp_stages))

        # Connect lp section to outlet stage, not allowing outlet stage to be
        # disconnected
        last_lp = config.num_lp
        if last_lp in config.lp_split_locations:  # connect splitter to outlet
            self.lp_to_outlet_stream = Arc(
                source=self.lp_split[last_lp].outlet_1,
                destination=self.outlet_stage.inlet,
            )
        else:  # connect last lpstage to outlet
            self.lp_to_outlet_stream = Arc(
                source=self.lp_stages[last_lp].outlet,
                destination=self.outlet_stage.inlet,
            )
        pyo.TransformationFactory("network.expand_arcs").apply_to(self)
Example #3
0
class HelmTurbineMultistageData(UnitModelBlockData):
    CONFIG = ConfigBlock()
    _define_turbine_multistage_config(CONFIG)

    def build(self):
        super().build()
        config = self.config
        unit_cfg = {  # general unit model config
            "dynamic": config.dynamic,
            "has_holdup": config.has_holdup,
            "property_package": config.property_package,
            "property_package_args": config.property_package_args,
        }
        ni = self.config.num_parallel_inlet_stages
        inlet_idx = self.inlet_stage_idx = pyo.RangeSet(ni)

        thrtl_cfg = unit_cfg.copy()
        thrtl_cfg["valve_function"] = self.config.throttle_valve_function
        thrtl_cfg["valve_function_callback"] = \
            self.config.throttle_valve_function_callback

        # Adding unit models
        # ------------------------

        # Splitter to inlet that splits main flow into parallel flows for
        # paritial arc admission to the turbine
        self.inlet_split = HelmSplitter(default=self._split_cfg(unit_cfg, ni))
        self.throttle_valve = SteamValve(inlet_idx, default=thrtl_cfg)
        self.inlet_stage = HelmTurbineInletStage(inlet_idx, default=unit_cfg)
        # mixer to combine the parallel flows back together
        self.inlet_mix = HelmMixer(default=self._mix_cfg(unit_cfg, ni))
        # add turbine sections.
        # inlet stage -> hp stages -> ip stages -> lp stages -> outlet stage
        self.hp_stages = HelmTurbineStage(pyo.RangeSet(config.num_hp),
                                          default=unit_cfg)
        self.ip_stages = HelmTurbineStage(pyo.RangeSet(config.num_ip),
                                          default=unit_cfg)
        self.lp_stages = HelmTurbineStage(pyo.RangeSet(config.num_lp),
                                          default=unit_cfg)
        self.outlet_stage = HelmTurbineOutletStage(default=unit_cfg)

        for i in self.hp_stages:
            self.hp_stages[i].ratioP.fix()
            self.hp_stages[i].efficiency_isentropic.fix()
        for i in self.ip_stages:
            self.ip_stages[i].ratioP.fix()
            self.ip_stages[i].efficiency_isentropic.fix()
        for i in self.lp_stages:
            self.lp_stages[i].ratioP.fix()
            self.lp_stages[i].efficiency_isentropic.fix()

        # Then make splitter config.  If number of outlets is specified
        # make a specific config, otherwise use default with 2 outlets
        s_sfg_default = self._split_cfg(unit_cfg, 2)
        hp_splt_cfg = {}
        ip_splt_cfg = {}
        lp_splt_cfg = {}
        # Now to finish up if there are more than two outlets, set that
        for i, v in config.hp_split_num_outlets.items():
            hp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        for i, v in config.ip_split_num_outlets.items():
            ip_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        for i, v in config.lp_split_num_outlets.items():
            lp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
        # put in splitters for turbine steam extractions
        if config.hp_split_locations:
            self.hp_split = HelmSplitter(config.hp_split_locations,
                                         default=s_sfg_default,
                                         initialize=hp_splt_cfg)
        else:
            self.hp_split = {}
        if config.ip_split_locations:
            self.ip_split = HelmSplitter(config.ip_split_locations,
                                         default=s_sfg_default,
                                         initialize=ip_splt_cfg)
        else:
            self.ip_split = {}
        if config.lp_split_locations:
            self.lp_split = HelmSplitter(config.lp_split_locations,
                                         default=s_sfg_default,
                                         initialize=lp_splt_cfg)
        else:
            self.lp_split = {}
        # Done with unit models.  Adding Arcs (streams).
        # ------------------------------------------------

        # First up add streams in the inlet section
        def _split_to_rule(b, i):
            return {
                "source": getattr(self.inlet_split, "outlet_{}".format(i)),
                "destination": self.throttle_valve[i].inlet,
            }

        def _valve_to_rule(b, i):
            return {
                "source": self.throttle_valve[i].outlet,
                "destination": self.inlet_stage[i].inlet,
            }

        def _inlet_to_rule(b, i):
            return {
                "source": self.inlet_stage[i].outlet,
                "destination": getattr(self.inlet_mix, "inlet_{}".format(i)),
            }

        self.stream_throttle_inlet = Arc(inlet_idx, rule=_split_to_rule)
        self.stream_throttle_outlet = Arc(inlet_idx, rule=_valve_to_rule)
        self.stream_inlet_mix_inlet = Arc(inlet_idx, rule=_inlet_to_rule)

        # There are three sections HP, IP, and LP which all have the same sort
        # of internal connctions, so the functions below provide some generic
        # capcbilities for adding the internal Arcs (streams).
        def _arc_indexes(nstages, index_set, discon, splits):
            """
            This takes the index set of all possible streams in a turbine
            section and throws out arc indexes for stages that are disconnected
            and arc indexes that are not needed because there is no splitter
            after a stage.

            Args:
                nstages (int): Number of stages in section
                index_set (Set): Index set for arcs in the section
                discon (list): Disconnected stages in the section
                splits (list): Spliter locations
            """
            sr = set()  # set of things to remove from the Arc index set
            for i in index_set:
                if (i[0] in discon or i[0] == nstages) and i[0] in splits:
                    # don't connect stage i to next remove stream after split
                    sr.add((i[0], 2))
                elif (i[0] in discon
                      or i[0] == nstages) and i[0] not in splits:
                    # no splitter and disconnect so remove both streams
                    sr.add((i[0], 1))
                    sr.add((i[0], 2))
                elif i[0] not in splits:
                    # no splitter and not disconnected so just second stream
                    sr.add((i[0], 2))
                else:
                    # has splitter so need both streams don't remove anything
                    pass
            for i in sr:  # remove the unneeded Arc indexes
                index_set.remove(i)

        def _arc_rule(turbines, splitters):
            """
            This creates a rule function for arcs in a turbine section. When
            this is used, the indexes for nonexistant stream will have already
            been removed, so any indexes the rule will get should have a stream
            associated.

            Args:
                turbines (TurbineStage): Indexed block with turbine section stages
                splitters (Separator): Indexed block of splitters
            """
            def _rule(b, i, j):
                if i in splitters and j == 1:  # stage to splitter
                    return {
                        "source": turbines[i].outlet,
                        "destination": splitters[i].inlet,
                    }
                elif j == 2:  # splitter to next stage
                    return {
                        "source": splitters[i].outlet_1,
                        "destination": turbines[i + 1].inlet,
                    }
                else:  # no splitter, stage to next stage
                    return {
                        "source": turbines[i].outlet,
                        "destination": turbines[i + 1].inlet,
                    }

            return _rule

        # Create initial arcs index sets with all possible streams
        self.hp_stream_idx = pyo.Set(initialize=self.hp_stages.index_set() *
                                     [1, 2])
        self.ip_stream_idx = pyo.Set(initialize=self.ip_stages.index_set() *
                                     [1, 2])
        self.lp_stream_idx = pyo.Set(initialize=self.lp_stages.index_set() *
                                     [1, 2])

        # Throw out unneeded streams for disconnected stages or no splitter
        _arc_indexes(
            config.num_hp,
            self.hp_stream_idx,
            config.hp_disconnect,
            config.hp_split_locations,
        )
        _arc_indexes(
            config.num_ip,
            self.ip_stream_idx,
            config.ip_disconnect,
            config.ip_split_locations,
        )
        _arc_indexes(
            config.num_lp,
            self.lp_stream_idx,
            config.lp_disconnect,
            config.lp_split_locations,
        )

        # Create connections internal to each turbine section (hp, ip, and lp)
        self.hp_stream = Arc(self.hp_stream_idx,
                             rule=_arc_rule(self.hp_stages, self.hp_split))
        self.ip_stream = Arc(self.ip_stream_idx,
                             rule=_arc_rule(self.ip_stages, self.ip_split))
        self.lp_stream = Arc(self.lp_stream_idx,
                             rule=_arc_rule(self.lp_stages, self.lp_split))

        # Connect hp section to ip section unless its a disconnect location
        last_hp = config.num_hp
        if 0 not in config.ip_disconnect and last_hp not in config.hp_disconnect:
            # Not disconnected stage so add stream, depending on splitter existance
            if last_hp in config.hp_split_locations:  # connect splitter to ip
                self.hp_to_ip_stream = Arc(
                    source=self.hp_split[last_hp].outlet_1,
                    destination=self.ip_stages[1].inlet,
                )
            else:  # connect last hp to ip
                self.hp_to_ip_stream = Arc(
                    source=self.hp_stages[last_hp].outlet,
                    destination=self.ip_stages[1].inlet,
                )
        # Connect ip section to lp section unless its a disconnect location
        last_ip = config.num_ip
        if 0 not in config.lp_disconnect and last_ip not in config.ip_disconnect:
            if last_ip in config.ip_split_locations:  # connect splitter to ip
                self.ip_to_lp_stream = Arc(
                    source=self.ip_split[last_ip].outlet_1,
                    destination=self.lp_stages[1].inlet,
                )
            else:  # connect last hp to ip
                self.ip_to_lp_stream = Arc(
                    source=self.ip_stages[last_ip].outlet,
                    destination=self.lp_stages[1].inlet,
                )
        # Connect inlet stage to hp section
        #   not allowing disconnection of inlet and first regular hp stage
        if 0 in config.hp_split_locations:
            # connect inlet mix to splitter and splitter to hp section
            self.inlet_to_splitter_stream = Arc(
                source=self.inlet_mix.outlet,
                destination=self.hp_split[0].inlet)
            self.splitter_to_hp_stream = Arc(
                source=self.hp_split[0].outlet_1,
                destination=self.hp_stages[1].inlet)
        else:  # connect mixer to first hp turbine stage
            self.inlet_to_hp_stream = Arc(source=self.inlet_mix.outlet,
                                          destination=self.hp_stages[1].inlet)

        self.power = pyo.Var(self.flowsheet().time,
                             initialize=-1e8,
                             doc="power (W)")

        @self.Constraint(self.flowsheet().time)
        def power_eqn(b, t):
            return (b.power[t] == b.outlet_stage.control_volume.work[t] *
                    b.outlet_stage.efficiency_mech +
                    sum(b.inlet_stage[i].control_volume.work[t] *
                        b.inlet_stage[i].efficiency_mech
                        for i in b.inlet_stage) +
                    sum(b.hp_stages[i].control_volume.work[t] *
                        b.hp_stages[i].efficiency_mech for i in b.hp_stages) +
                    sum(b.ip_stages[i].control_volume.work[t] *
                        b.ip_stages[i].efficiency_mech for i in b.ip_stages) +
                    sum(b.lp_stages[i].control_volume.work[t] *
                        b.lp_stages[i].efficiency_mech for i in b.lp_stages))

        # Connect lp section to outlet stage, not allowing outlet stage to be
        # disconnected
        last_lp = config.num_lp
        if last_lp in config.lp_split_locations:  # connect splitter to outlet
            self.lp_to_outlet_stream = Arc(
                source=self.lp_split[last_lp].outlet_1,
                destination=self.outlet_stage.inlet,
            )
        else:  # connect last lpstage to outlet
            self.lp_to_outlet_stream = Arc(
                source=self.lp_stages[last_lp].outlet,
                destination=self.outlet_stage.inlet,
            )
        pyo.TransformationFactory("network.expand_arcs").apply_to(self)

    def _split_cfg(self, unit_cfg, no=2):
        """
        This creates a configuration dictionary for a splitter.

        Args:
            unit_cfg: The base unit config dict.
            no: Number of outlets, default=2
        """
        # Create a dict for splitter config args
        cfg = copy.copy(unit_cfg)
        cfg.update(num_outlets=no)
        return cfg

    def _mix_cfg(self, unit_cfg, ni=2):
        """
        This creates a configuration dictionary for a mixer.

        Args:
            unit_cfg: The base unit config dict.
            ni: Number of inlets, default=2
        """
        cfg = copy.copy(unit_cfg)
        cfg.update(
            num_inlets=ni,
            momentum_mixing_type=MomentumMixingType.minimize_and_equality)
        return cfg

    def throttle_cv_fix(self, value):
        """
        Fix the thottle valve coefficients.  These are generally the same for
        each of the parallel stages so this provides a convenient way to set
        them.

        Args:
            value: The value to fix the turbine inlet flow coefficients at
        """
        for i in self.throttle_valve:
            self.throttle_valve[i].Cv.fix(value)

    def turbine_inlet_cf_fix(self, value):
        """
        Fix the inlet turbine stage flow coefficient.  These are
        generally the same for each of the parallel stages so this provides
        a convenient way to set them.

        Args:
            value: The value to fix the turbine inlet flow coefficients at
        """
        for i in self.inlet_stage:
            self.inlet_stage[i].flow_coeff.fix(value)

    def _init_section(
        self,
        stages,
        splits,
        disconnects,
        prev_port,
        outlvl,
        solver,
        optarg,
        copy_disconneted_flow,
        copy_disconneted_pressure,
    ):
        """ Reuse the initializtion for HP, IP and, LP sections.
        """
        if 0 in splits:
            copy_port(splits[0].inlet, prev_port)
            splits[0].initialize(outlvl=outlvl, solver=solver, optarg=optarg)
            prev_port = splits[0].outlet_1
        for i in stages:
            if i - 1 not in disconnects:
                copy_port(stages[i].inlet, prev_port)
            else:
                if copy_disconneted_flow:
                    for t in stages[i].inlet.flow_mol:
                        stages[i].inlet.flow_mol[t] = pyo.value(
                            prev_port.flow_mol[t])
                if copy_disconneted_pressure:
                    for t in stages[i].inlet.pressure:
                        stages[i].inlet.pressure[t] = pyo.value(
                            prev_port.pressure[t])
            stages[i].initialize(outlvl=outlvl, solver=solver, optarg=optarg)
            prev_port = stages[i].outlet
            if i in splits:
                copy_port(splits[i].inlet, prev_port)
                splits[i].initialize(outlvl=outlvl,
                                     solver=solver,
                                     optarg=optarg)
                prev_port = splits[i].outlet_1
        return prev_port

    def turbine_outlet_cf_fix(self, value):
        """
        Fix the inlet turbine stage flow coefficient.  These are
        generally the same for each of the parallel stages so this provides
        a convenient way to set them.

        Args:
            value: The value to fix the turbine inlet flow coefficients at
        """
        self.outlet_stage.flow_coeff.fix(value)

    def initialize(self,
                   outlvl=idaeslog.NOTSET,
                   solver=None,
                   flow_iterate=2,
                   optarg=None,
                   copy_disconneted_flow=True,
                   copy_disconneted_pressure=True,
                   calculate_outlet_cf=False,
                   calculate_inlet_cf=False):
        """
        Initialize

        Args:
            outlvl: logging level default is NOTSET, which inherits from the
                parent logger
            solver: the NL solver
            flow_iterate: If not calculating flow coefficients, this is the
                number of times to update the flow and repeat initialization
                (1 to 5 where 1 does not update the flow guess)
            optarg: solver arguments, default is None
            copy_disconneted_flow: Copy the flow through the disconnected stages
                default is True
            copy_disconneted_pressure: Copy the pressure through the disconnected
                stages default is True
            calculate_outlet_cf: Use the flow initial flow guess to calculate
                the outlet stage flow coefficient, default is False,
            calculate_inlet_cf: Use the inlet stage ratioP to calculate the flow
                coefficent for the inlet stage default is False

        Returns:
            None
        """
        # Setup loggers
        init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
        solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")
        # Store initial model specs, restored at the end of initializtion, so
        # the problem is not altered.  This can restore fixed/free vars,
        # active/inactive constraints, and fixed variable values.
        sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
        istate = to_json(self, return_dict=True, wts=sp)

        # Assume the flow into the turbine is a reasonable guess for
        # initializtion
        flow_guess = self.inlet_split.inlet.flow_mol[0].value

        for it_count in range(flow_iterate):
            self.inlet_split.initialize(outlvl=outlvl,
                                        solver=solver,
                                        optarg=optarg)

            # Initialize valves
            for i in self.inlet_stage_idx:
                u = self.throttle_valve[i]
                copy_port(u.inlet,
                          getattr(self.inlet_split, "outlet_{}".format(i)))
                u.initialize(outlvl=outlvl, solver=solver, optarg=optarg)

            # Initialize turbine
            for i in self.inlet_stage_idx:
                u = self.inlet_stage[i]
                copy_port(u.inlet, self.throttle_valve[i].outlet)
                u.initialize(outlvl=outlvl,
                             solver=solver,
                             optarg=optarg,
                             calculate_cf=calculate_inlet_cf)

            # Initialize Mixer
            self.inlet_mix.use_minimum_inlet_pressure_constraint()
            for i in self.inlet_stage_idx:
                copy_port(
                    getattr(self.inlet_mix, "inlet_{}".format(i)),
                    self.inlet_stage[i].outlet,
                )
                getattr(self.inlet_mix, "inlet_{}".format(i)).fix()
            self.inlet_mix.initialize(outlvl=outlvl,
                                      solver=solver,
                                      optarg=optarg)
            for i in self.inlet_stage_idx:
                getattr(self.inlet_mix, "inlet_{}".format(i)).unfix()
            self.inlet_mix.use_equal_pressure_constraint()

            prev_port = self.inlet_mix.outlet
            prev_port = self._init_section(
                self.hp_stages,
                self.hp_split,
                self.config.hp_disconnect,
                prev_port,
                outlvl,
                solver,
                optarg,
                copy_disconneted_flow=copy_disconneted_flow,
                copy_disconneted_pressure=copy_disconneted_pressure,
            )
            if len(self.hp_stages) in self.config.hp_disconnect:
                self.config.ip_disconnect.append(0)
            prev_port = self._init_section(
                self.ip_stages,
                self.ip_split,
                self.config.ip_disconnect,
                prev_port,
                outlvl,
                solver,
                optarg,
                copy_disconneted_flow=copy_disconneted_flow,
                copy_disconneted_pressure=copy_disconneted_pressure,
            )
            if len(self.ip_stages) in self.config.ip_disconnect:
                self.config.lp_disconnect.append(0)
            prev_port = self._init_section(
                self.lp_stages,
                self.lp_split,
                self.config.lp_disconnect,
                prev_port,
                outlvl,
                solver,
                optarg,
                copy_disconneted_flow=copy_disconneted_flow,
                copy_disconneted_pressure=copy_disconneted_pressure,
            )

            copy_port(self.outlet_stage.inlet, prev_port)
            self.outlet_stage.initialize(outlvl=outlvl,
                                         solver=solver,
                                         optarg=optarg,
                                         calculate_cf=calculate_outlet_cf)
            if calculate_outlet_cf:
                break
            if it_count < flow_iterate - 1:
                for t in self.inlet_split.inlet.flow_mol:
                    self.inlet_split.inlet.flow_mol[t].value = \
                        self.outlet_stage.inlet.flow_mol[t].value

                    for s in self.hp_split.values():
                        for i, o in enumerate(s.outlet_list):
                            if i == 0:
                                continue
                            o = getattr(s, o)
                            self.inlet_split.inlet.flow_mol[t].value += \
                                o.flow_mol[t].value
                    for s in self.ip_split.values():
                        for i, o in enumerate(s.outlet_list):
                            if i == 0:
                                continue
                            o = getattr(s, o)
                            self.inlet_split.inlet.flow_mol[t].value += \
                                o.flow_mol[t].value
                    for s in self.lp_split.values():
                        for i, o in enumerate(s.outlet_list):
                            if i == 0:
                                continue
                            o = getattr(s, o)
                            self.inlet_split.inlet.flow_mol[t].value += \
                                o.flow_mol[t].value

        if calculate_inlet_cf:
            # cf was probably fixed, so will have to set the value agian here
            # if you ask for it to be calculated.
            icf = {}
            for i in self.inlet_stage:
                for t in self.inlet_stage[i].flow_coeff:
                    icf[i, t] = pyo.value(self.inlet_stage[i].flow_coeff[t])
        if calculate_outlet_cf:
            ocf = pyo.value(self.outlet_stage.flow_coeff)

        from_json(self, sd=istate, wts=sp)

        if calculate_inlet_cf:
            # cf was probably fixed, so will have to set the value agian here
            # if you ask for it to be calculated.
            for t in self.inlet_stage[i].flow_coeff:
                for i in self.inlet_stage:
                    self.inlet_stage[i].flow_coeff[t] = icf[i, t]
        if calculate_outlet_cf:
            self.outlet_stage.flow_coeff = ocf

    def calculate_scaling_factors(self):
        super().calculate_scaling_factors()
        # Add a default power scale
        # pretty safe to say power is around 100 to 1000 MW

        for t in self.power:
            if iscale.get_scaling_factor(self.power[t]) is None:
                iscale.set_scaling_factor(self.power[t], 1e-8)

        for t, c in self.power_eqn.items():
            power_scale = iscale.get_scaling_factor(self.power[t],
                                                    default=1,
                                                    warning=True)
            # Set power equation scale factor
            iscale.constraint_scaling_transform(c,
                                                power_scale,
                                                overwrite=False)
Example #4
0
def add_unit_models(m):
    fs = m.fs_main.fs_blr
    prop_water = m.fs_main.prop_water
    prop_gas = m.fs_main.prop_gas

    fs.num_mills = pyo.Var()
    fs.num_mills.fix(4)

    # 14 waterwall zones
    fs.ww_zones = pyo.RangeSet(14)

    # boiler based on surrogate
    fs.aBoiler = BoilerSurrogate(default={"dynamic": False,
                               "side_1_property_package": prop_gas,
                               "side_2_property_package": prop_gas,
                               "has_heat_transfer": False,
                               "has_pressure_change": False,
                               "has_holdup": False})

    # model a drum by a WaterFlash, a Mixer and a Drum model
    fs.aFlash = WaterFlash(default={"dynamic": False,
                               "property_package": prop_water,
                               "has_phase_equilibrium": False,
                               "has_heat_transfer": False,
                               "has_pressure_change": False})
    fs.aMixer = HelmMixer(default={"dynamic": False,
                              "property_package": prop_water,
                              "momentum_mixing_type": MomentumMixingType.equality,
                              "inlet_list": ["FeedWater", "SatWater"]})
    fs.aDrum = Drum1D(default={"property_package": prop_water,
                               "has_holdup": True,
                               "has_heat_transfer": True,
                               "has_pressure_change": True,
                               "finite_elements": 4,
                               "inside_diameter": 1.778,
                               "thickness": 0.127})
    fs.blowdown_split = HelmSplitter(
        default={
            "dynamic": False,
            "property_package": prop_water,
            "outlet_list": ["FW_Downcomer", "FW_Blowdown"],
        }
    )
    # downcomer
    fs.aDowncomer = Downcomer(default={
                               "dynamic": False,
                               "property_package": prop_water,
                               "has_holdup": True,
                               "has_heat_transfer": True,
                               "has_pressure_change": True})

    # 14 WaterwallSection units
    fs.Waterwalls = WaterwallSection(fs.ww_zones,
                               default={
                               "has_holdup": True,
                               "property_package": prop_water,
                               "has_equilibrium_reactions": False,
                               "has_heat_of_reaction": False,
                               "has_heat_transfer": True,
                               "has_pressure_change": True})

    # roof superheater
    fs.aRoof = SteamHeater(default={
                               "dynamic": False,
                               "property_package": prop_water,
                               "has_holdup": True,
                               "has_equilibrium_reactions": False,
                               "has_heat_of_reaction": False,
                               "has_heat_transfer": True,
                               "has_pressure_change": True,
                               "single_side_only" : True})

    # platen superheater
    fs.aPlaten = SteamHeater(default={
                               "dynamic": False,
                               "property_package": prop_water,
                               "has_holdup": True,
                               "has_equilibrium_reactions": False,
                               "has_heat_of_reaction": False,
                               "has_heat_transfer": True,
                               "has_pressure_change": True,
                               "single_side_only" : False})

    # 1st reheater
    fs.aRH1 = HeatExchangerCrossFlow2D(default={
                               "tube_side":{"property_package": prop_water, "has_holdup": False,
                                            "has_pressure_change": True},
                               "shell_side":{"property_package": prop_gas, "has_holdup": False,
                                             "has_pressure_change": True},
                               "finite_elements": 4,
                               "flow_type": "counter_current",
                               "tube_arrangement": "in-line",
                               "tube_side_water_phase": "Vap",
                               "has_radiation": True,
                               "radial_elements": 5,
                               "inside_diameter": 2.202*0.0254,
                               "thickness": 0.149*0.0254})

    # 2nd reheater
    fs.aRH2 = HeatExchangerCrossFlow2D(default={
                               "tube_side":{"property_package": prop_water, "has_holdup": False,
                                            "has_pressure_change": True},
                               "shell_side":{"property_package": prop_gas, "has_holdup": False,
                                             "has_pressure_change": True},
                               "finite_elements": 2,
                               "flow_type": "counter_current",
                               "tube_arrangement": "in-line",
                               "tube_side_water_phase": "Vap",
                               "has_radiation": True,
                               "radial_elements": 5,
                               "inside_diameter": 2.217*0.0254,
                               "thickness": 0.1415*0.0254})

    # primary superheater
    fs.aPSH = HeatExchangerCrossFlow2D(default={
                               "tube_side":{"property_package": prop_water, "has_holdup": False,
                                            "has_pressure_change": True},
                               "shell_side":{"property_package": prop_gas, "has_holdup": False,
                                             "has_pressure_change": True},
                               "finite_elements": 5,
                               "flow_type": "counter_current",
                               "tube_arrangement": "in-line",
                               "tube_side_water_phase": "Vap",
                               "has_radiation": True,
                               "radial_elements": 5,
                               "inside_diameter": 1.45*0.0254,
                               "thickness": 0.15*0.0254})

    # economizer
    fs.aECON = HeatExchangerCrossFlow2D(default={
                               "tube_side":{"property_package": prop_water, "has_holdup": False,
                                            "has_pressure_change": True},
                               "shell_side":{"property_package": prop_gas, "has_holdup": False,
                                             "has_pressure_change": True},
                               "finite_elements": 5,
                               "flow_type": "counter_current",
                               "tube_arrangement": "in-line",
                               "tube_side_water_phase": "Liq",
                               "has_radiation": False,
                               "radial_elements": 5,
                               "inside_diameter": 1.452*0.0254,
                               "thickness": 0.149*0.0254})

    # water pipe from economizer outlet to drum
    fs.aPipe = WaterPipe(default={
                               "dynamic": False,
                               "property_package": prop_water,
                               "has_holdup": True,
                               "has_heat_transfer": False,
                               "has_pressure_change": True,
                               "water_phase": 'Liq',
                               "contraction_expansion_at_end": 'None'})

    # a mixer to mix hot primary air with tempering air
    fs.Mixer_PA = Mixer(
        default={
            "dynamic": False,
            "property_package": prop_gas,
            "momentum_mixing_type": MomentumMixingType.equality,
            "inlet_list": ["PA_inlet", "TA_inlet"],
        }
    )

    # attemperator for main steam before platen SH
    fs.Attemp = HelmMixer(
        default={
            "dynamic": False,
            "property_package": prop_water,
            "momentum_mixing_type": MomentumMixingType.equality,
            "inlet_list": ["Steam_inlet", "Water_inlet"],
        }
    )

    # air preheater as three-stream heat exchanger with heat loss to ambient,
    #     side_1: flue gas
    #     side_2:PA (priamry air?)
    #     side_3:PA (priamry air?)
    fs.aAPH = HeatExchangerWith3Streams(
        default={"dynamic": False,
            "side_1_property_package": prop_gas,
            "side_2_property_package": prop_gas,
            "side_3_property_package": prop_gas,
            "has_heat_transfer": True,
            "has_pressure_change": True,
            "has_holdup": False,
            "flow_type_side_2": "counter-current",
            "flow_type_side_3": "counter-current",
        }
    )
    return m