def query(): data = json.loads(request.data) home_number = data["home_number"] start_timestamp = data['start'] * 1000 end_timestamp = data['end'] * 1000 # Creating a SMAP interface smap = SMAP(SMAP_URL) uuid = smap.find_uuid(home_number) smap_readings = smap.get_readings(uuid, start_timestamp, end_timestamp) df = to_pd_series(smap_readings) # Downsample df = df.resample('1T').dropna() # Creating nilmtk building b = Building() # Attaching mains b.utility.electric.mains[MainsName(1, 1)] = df # Instantiating CO disaggregator disaggregator = CO_1d() # Loading model path_to_file = os.path.join(MODEL_PATH, home_number + ".json") disaggregator.import_model(path_to_file) # Perform disaggregation disaggregator.disaggregate(b) predictions = disaggregator.predictions return pd_to_higcharts(predictions)
def query_raw(): data = json.loads(request.data) home_number = data["home_number"] start_timestamp = data['start'] * 1000 end_timestamp = data['end'] * 1000 # Creating a SMAP interface smap = SMAP(SMAP_URL) uuid = smap.find_uuid(home_number) smap_readings = smap.get_readings(uuid, start_timestamp, end_timestamp) df = to_pd_series(smap_readings) # Downsample df = df.resample('1T').dropna() df.rename(columns={"poweractive": "total"}) return pd_to_higcharts(df)
from iiit_disagg.smap_interface import SMAP from iiit_disagg.smap_interface import to_pd_series from nilmtk.building import Building from nilmtk.sensors.electricity import MainsName, Measurement from nilmtk.disaggregate.co_1d import CO_1d FLAT_NUMBER = '101' START = 1387996200000 END = 1388341800000 DISAGG_FEATURE = Measurement('power', 'active') # Making SMAP connection smap = SMAP("http://nms.iiitd.edu.in:9102/") # Get UUID UUID = smap.find_uuid(FLAT_NUMBER) # Getting data for UUID smap_readings = smap.get_readings(UUID, START, END) # Transform to NILMTK Mains df = to_pd_series(smap_readings) # Downsample df = df.resample('1T') # Creating nilmtk building b = Building() # Attaching mains b.utility.electric.mains[MainsName(1, 1)] = df