Example #1
0
def copyMatrixToImage2D(matrix,imageName,sizeX = -1,sizeY = -1):
	if sizeX == -1:
		sizeX = len(matrix)
	if sizeY == -1:
		sizeY = len(matrix[0])
	imp = ImageStack.create(sizeX, sizeY, 1,16)

	processor = imp.getProcessor(1)

	for indexX in range(sizeX):
		for indexY in range(sizeY):
			processor.set(indexX,indexY,int(matrix[indexX][indexY]))
	ImagePlus(imageName, imp).show()
def run(imagefile, verbose=False):

    # open image file and get a specific series
    log.log(LogLevel.INFO, 'Opening Image: ' + imagefile)
    imp, MetaInfo = ImportTools.openfile(imagefile)

    # output of image metadata in log window
    if verbose:
        for k, v in MetaInfo.items():
            log.log(LogLevel.INFO, str(k) + ' : ' + str(v))

    log.log(LogLevel.INFO, 'File Extension    : ' + MetaInfo['Extension'])
    if 'ResolutionCount' in MetaInfo:
        log.log(LogLevel.INFO,
                'Resolution Count  : ' + str(MetaInfo['ResolutionCount']))
    if 'SeriesCount' in MetaInfo:
        log.log(LogLevel.INFO,
                'SeriesCount       : ' + str(MetaInfo['SeriesCount']))
    if 'SizeC' in MetaInfo:
        log.log(LogLevel.INFO, 'Channel Count     : ' + str(MetaInfo['SizeC']))

    # do the processing
    log.log(LogLevel.INFO, 'Start Processing ...')

    # create empty image list
    imglist_t_c = []
    imglist_t = []
    numch = imp.getNChannels()

    # do the processing
    for t in range(MetaInfo['SizeT']):

        # get the timepoint
        imp_t = getstackfrom5d(imp,
                               MetaInfo,
                               firstC=1,
                               lastC=MetaInfo['SizeC'],
                               firstZ=1,
                               lastZ=MetaInfo['SizeZ'],
                               firstT=t + 1,
                               lastT=t + 1)

        # calc the focus values for the different channels
        for ch in range(numch):

            # get a stack for a channel
            imp_t_c = getstackfrom5d(imp_t,
                                     MetaInfo,
                                     firstC=ch + 1,
                                     lastC=ch + 1,
                                     firstZ=1,
                                     lastZ=MetaInfo['SizeZ'],
                                     firstT=1,
                                     lastT=1)

            # create a name for the plane
            #name = os.path.basename(imagefile) + 'T=' + str(t+1) + '_CH=' + str(ch+1)
            name = 'T=' + str(t + 1) + '_CH=' + str(ch + 1)

            # get the plane with the bst focus to the current timepoint and current channel
            sp_c, fv, fv_max, fv_max_index = calc_focus(imp_t_c, name)
            log.log(LogLevel.INFO, 'Processing TimePoint : ' + str(t + 1))
            log.log(LogLevel.INFO, 'Processing Channel   : ' + str(ch + 1))
            log.log(LogLevel.INFO, 'Max. Value           : ' + str(fv_max))
            log.log(LogLevel.INFO,
                    'Max. Value Slice     : ' + str(fv_max_index))

            # set correct image properties
            sp_c = MiscTools.setproperties(sp_c,
                                           scaleX=MetaInfo['ScaleX'],
                                           scaleY=MetaInfo['ScaleY'],
                                           scaleZ=MetaInfo['ScaleZ'],
                                           unit='micron',
                                           sizeC=1,
                                           sizeZ=1,
                                           sizeT=1)

            imglist_t_c.append(sp_c)

        print 'List CH Stacks :', len(imglist_t_c)

        for i in range(len(imglist_t_c)):
            print str(i) + ' : ', type(imglist_t_c[i])

        # in case of more than one channel use an jarray
        if numch > 1:

            # create an array
            imgarray_c = jarray.array(imglist_t_c, ImagePlus)
            # create an ImageStack from the array
            print 'Type imgarray_c : ', type(imgarray_c)

            for i in range(numch):
                print type(imgarray_c[i])

            imgstack_c = ImageStack.create(imgarray_c)

            # create an ImagePlus object from the jarray
            new_name = os.path.splitext(os.path.basename(imagefile))[0]
            imp_sp_c = ImagePlus(new_name + '_SHARPEST_C', imgstack_c)

        # in case of exactly one channel directly use the ImgPlus
        if numch == 1:
            imp_sp_c = imglist_t_c[0]

        # set correct image properties for the final image
        imp_sp_c = MiscTools.setproperties(imp_sp_c,
                                           scaleX=MetaInfo['ScaleX'],
                                           scaleY=MetaInfo['ScaleY'],
                                           scaleZ=MetaInfo['ScaleZ'],
                                           unit='micron',
                                           sizeC=numch,
                                           sizeZ=1,
                                           sizeT=1)

        # concatenate the timepoints
        imglist_t.append(imp_sp_c)

        if numch > 1:
            # create an array
            imgarray = jarray.array(imglist_t, ImagePlus)
            # create an ImageStack from the array
            imgstack = ImageStack.create(imgarray)
            # create an ImagePlus object from the jarray
            new_name = os.path.splitext(os.path.basename(imagefile))[0]
            imp_sp_t = ImagePlus(new_name + '_SHARPEST_CT', imgstack)

        # in case of exactly one channel directly use the ImgPlus
        if numch == 1:
            imp_sp_t = imglist_t[0]

    return imp_sp_t
Example #3
0
  nucIp, cmIp = openStitched(group, rowNo, colNo) if stitched else openUnstitched(group)
  if nucIp is None or cmIp is None: continue
  nucStack, cmStack = nucIp.getStack(), cmIp.getStack()
  nucIpMedian = calcMedian(nucIp)
  IJ.run(nucIp, "Subtract...", "value=" + str(nucIpMedian) + " stack")
  nucIpForMeasure = nucIp.duplicate()
  nucMaskIp = generateNucleusMask(nucIp, nucMethod, analyzeNucStack, nucMinSize)
  cmIp, cmMaskIp = generateCardiomyocyteMask(cmIp, cmMethod, analyzeCmStack, cmMinSize, brightfield)
  nucMaskIp.show()
  nucIpForMeasure.show()
  rm = RoiManager.getRoiManager()
  rm.runCommand("Associate", "true")
  rm.runCommand("Show All without labels")
  #This fits ellipses to the nuclear mask
  IJ.run(nucMaskIp, "Ellipse Split", "binary=[Use standard watershed] add_to_manager add_to_results_table merge_when_relativ_overlap_larger_than_threshold overlap=95 major=0-Infinity minor=0-Infinity aspect=1-Infinity stack")
  nucMaskStack2 = ImageStack.create(nucIp.width, nucIp.height, nucStack.size(), cmStack.getProcessor(1).getBitDepth())
  rois = rm.getRoisAsArray()
  #This loop is used to setup an image for the voronoi diagram nucelar splitting, setting pixels which
  #are contested between two neighboring nuclei to 0
  for roi in rois:
    z = roi.getZPosition()- 1
    try:
	    for p in roi.getContainedPoints():
	      try:
	        val = nucMaskStack2.getVoxel(p.x, p.y, z)
	        if val == 1: pass
	        elif val == 2:
	          nucMaskStack2.setVoxel(p.x, p.y, z, 1)
	        else: nucMaskStack2.setVoxel(p.x, p.y, z, 2)
	      except: pass
    except: pass
def run(imagefile, verbose=False):

    # open image file and get a specific series
    log.log(LogLevel.INFO, 'Opening Image: ' + imagefile)
    imp, MetaInfo = ImportTools.openfile(imagefile)

    # output of image metadata in log window
    if verbose:
        for k, v in MetaInfo.items():
            log.log(LogLevel.INFO, str(k) + ' : ' + str(v))

    log.log(LogLevel.INFO, 'File Extension    : ' + MetaInfo['Extension'])
    if 'ResolutionCount' in MetaInfo:
        log.log(LogLevel.INFO,
                'Resolution Count  : ' + str(MetaInfo['ResolutionCount']))
    if 'SeriesCount' in MetaInfo:
        log.log(LogLevel.INFO,
                'SeriesCount       : ' + str(MetaInfo['SeriesCount']))
    if 'SizeC' in MetaInfo:
        log.log(LogLevel.INFO, 'Channel Count     : ' + str(MetaInfo['SizeC']))

    # do the processing
    log.log(LogLevel.INFO, 'Start Processing ...')

    # create empty image list
    imglist = []
    numch = imp.getNChannels()

    # do the processing
    for ch in range(numch):

        # get a channel
        imp_c = MiscTools.splitchannel(imp, ch)
        name = os.path.basename(imagefile) + '_CH=' + str(ch)

        sp, fv, fv_max, fv_max_index = calc_focus(imp_c, name)
        log.log(LogLevel.INFO, 'Processing Channel : ' + str(ch))
        log.log(LogLevel.INFO, 'Max. Value         : ' + str(fv_max))
        log.log(LogLevel.INFO, 'Max. Value Slice   : ' + str(fv_max_index))

        # set correct image properties
        sp = MiscTools.setproperties(sp,
                                     scaleX=MetaInfo['ScaleX'],
                                     scaleY=MetaInfo['ScaleY'],
                                     scaleZ=MetaInfo['ScaleZ'],
                                     unit='micron',
                                     sizeC=1,
                                     sizeZ=1,
                                     sizeT=1)

        imglist.append(sp)

    # in case of more than one channel use an jarray
    if numch > 1:
        # create an array
        imgarray = jarray.array(imglist, ImagePlus)
        # create an ImageStack from the array
        imgstack = ImageStack.create(imgarray)
        # create an ImagePlus object from the jarray
        new_name = os.path.splitext(os.path.basename(imagefile))[0]
        imp_sp = ImagePlus(new_name + '_SHARPEST', imgstack)

    # ic case of exactly one channel directly use the ImgPlus
    if numch == 1:
        imp_sp = imglist[0]

    # set correct image properties for the final image
    imp_sp = MiscTools.setproperties(imp_sp,
                                     scaleX=MetaInfo['ScaleX'],
                                     scaleY=MetaInfo['ScaleY'],
                                     scaleZ=MetaInfo['ScaleZ'],
                                     unit='micron',
                                     sizeC=numch,
                                     sizeZ=1,
                                     sizeT=1)

    return imp_sp
Example #5
0
num_window_x = int(round(width/width_sub)) #int(width-width_sub+1)
num_window_y = int(round(height/width_sub)) #int(height-width_sub+1)

center_px = int(round(width_sub/2))

new_rois = []
for i in range(0,num_window_x):
	for j in range(0,num_window_y):
		new_roi = Roi(i*width_sub, j*width_sub, width_sub, width_sub)
		new_rois.append(new_roi)
		
for new_roi in new_rois:
	rm.addRoi(new_roi)

#new_img = IJ.createHyperStack("Time Correlation",width,height,1,1,num_frames, 32)
result_stack = ImageStack.create(width,height, max_cycle_length, 32)

#empty = imp2.getProcessor().createProcessor(width, height)

#for i in range(max_cycle_length):
	#result_stack.addSlice("",empty)

for i, roi in enumerate(rm.getRoisAsArray()):
	assert roi.getTypeAsString() == 'Rectangle', "ROI needs to be a rectangle"
	x_pos = roi.getPolygon().xpoints[0] + int(round(width_sub/2))
	y_pos = roi.getPolygon().ypoints[0] + int(round(width_sub/2))
	imp3 = imp2.duplicate()
	imp3.show()
	#imp3 = IJ.getImage()
	imp3.setRoi(roi)
	IJ.run(imp3, "Crop", "")