Example #1
0
    def visualize(self, data):
        r''' Visualizes the current output data of the model.

        The point clouds for respective input data is plotted.

        Args:
            data (tensor): input data
        '''
        device = self.device

        points_gt = data.get('pointcloud').to(device)
        inputs = data.get('inputs').to(device)

        with torch.no_grad():
            points_out = self.model(inputs)

        points_out = points_out.cpu().numpy()
        points_gt = points_gt.cpu().numpy()

        batch_size = inputs.size(0)
        for i in trange(batch_size):
            input_img_path = os.path.join(self.vis_dir, '%03d_in.png' % i)
            vis.visualize_data(inputs[i].cpu(), self.input_type,
                               input_img_path)
            out_file = os.path.join(self.vis_dir, '%03d.png' % i)
            out_file_gt = os.path.join(self.vis_dir, '%03d_gt.png' % i)
            vis.visualize_pointcloud(points_out[i], out_file=out_file)
            vis.visualize_pointcloud(points_gt[i], out_file=out_file_gt)
Example #2
0
    def visualize(self, data):
        r''' Visualises the GT point cloud and predicted vertices (as a point cloud).

        Arguments:
            data (tensor): input data
        '''

        points_gt = data.get('pointcloud').to(self.device)
        img = data.get('inputs').to(self.device)
        camera_args = common.get_camera_args(data,
                                             'pointcloud.loc',
                                             'pointcloud.scale',
                                             device=self.device)
        world_mat, camera_mat = camera_args['Rt'], camera_args['K']

        if not os.path.isdir(self.vis_dir):
            os.mkdir(self.vis_dir)

        with torch.no_grad():
            outputs1, outputs2 = self.model(img, camera_mat)

        pred_vertices_1, pred_vertices_2, pred_vertices_3 = outputs1
        points_out = common.transform_points_back(pred_vertices_3, world_mat)
        points_out = points_out.cpu().numpy()
        input_img_path = os.path.join(self.vis_dir, 'input.png')
        save_image(img.cpu(), input_img_path, nrow=4)

        points_gt = points_gt.cpu().numpy()
        batch_size = img.size(0)
        for i in range(batch_size):
            out_file = os.path.join(self.vis_dir, '%03d.png' % i)
            out_file_gt = os.path.join(self.vis_dir, '%03d_gt.png' % i)
            vis.visualize_pointcloud(points_out[i], out_file=out_file)
            vis.visualize_pointcloud(points_gt[i], out_file=out_file_gt)
    def visualize(self, data, it=0, vis_type='mesh'):
        ''' Visualized the data.

        Args:
            data (dict): data dictionary
            it (int): training iteration
            vis_type (string): visualization type
        '''
        if self.multi_gpu:
            print(
                "Sorry, visualizations currently not implemented when using \
                multi GPU training.")
            return 0

        device = self.device
        inputs = data.get('inputs', torch.empty(1, 0)).to(device)
        batch_size = inputs.shape[0]
        c = self.model.encode_inputs(inputs)
        if vis_type == 'voxel':
            shape = (32, 32, 32)
            p = make_3d_grid([-0.5] * 3, [0.5] * 3, shape).to(device)
            p = p.unsqueeze(0).repeat(batch_size, 1, 1)
            with torch.no_grad():
                p_r = self.model.decode(p, c=c).probs
            voxels_out = (p_r >= self.threshold).cpu().numpy()
            voxels_out = voxels_out.reshape(batch_size, 32, 32, 32)
            for i in range(batch_size):
                out_file = os.path.join(self.vis_dir, '%03d.png' % i)
                vis.visualize_voxels(voxels_out[i], out_file)
        elif vis_type == 'pointcloud':
            p = torch.rand(batch_size, 60000, 3).to(device) - 0.5
            with torch.no_grad():

                occ = self.model.decode(p, c=c).probs
                mask = occ > self.threshold

            for i in range(batch_size):
                pi = p[i][mask[i]].cpu()
                out_file = os.path.join(self.vis_dir, '%03d.png' % i)
                vis.visualize_pointcloud(pi, out_file=out_file)
        elif vis_type == 'mesh':
            try:
                mesh_list = self.generator.generate_meshes(
                    data, return_stats=False)
                for i, mesh in tqdm(enumerate(mesh_list)):
                    if self.overwrite_visualization:
                        ending = ''
                    else:
                        ending = '_%010d' % it
                    mesh_out_file = os.path.join(
                        self.vis_dir, '%03d%s.ply' % (i, ending))
                    mesh.export(mesh_out_file)
            except Exception as e:
                print("Exception occurred during visualization: ", e)
        else:
            print('The visualization type %s is not valid!' % vis_type)
def test():
    model_class = '02691156'
    model_id = '10155655850468db78d106ce0a280f87'

    if depth_pred:
        depth_foldername = 'depth_pred'
    else:
        depth_foldername = 'depth'

    depth_folder = os.path.join(DEPTH_ROOT, model_class, model_id,
                                depth_foldername)
    mask_folder = os.path.join(MASK_ROOT, model_class, model_id, 'mask')

    output_folder = os.path.join(TEST_ROOT)
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)

    depth_range_file = os.path.join(depth_folder, 'depth_range.txt')
    worker = DepthToPCNp()

    with open(depth_range_file, 'r') as f:
        for i in range(N_VIEWS):
            depth_range = f.readline().split(' ')
            depth_min = float(depth_range[0])
            depth_max = float(depth_range[1])
            depth_unit = float(depth_range[2])

            depth_file = os.path.join(depth_folder, '%.2d_depth.png' % i)
            mask_file = os.path.join(mask_folder, '%.2d_mask.png' % i)
            depth_img = Image.open(depth_file).convert('L')
            depth_img.save(os.path.join(output_folder, '%.2d_depth.png' % i))
            mask_img = Image.open(mask_file)
            pts = worker.work(depth_img,
                              mask_img,
                              depth_min,
                              depth_max,
                              n=N,
                              unit=depth_unit)

            output_file = os.path.join(output_folder,
                                       '%.2d_pointcloud.npz' % i)
            np.savez(output_file, pointcloud=pts)

            output_file = os.path.join(output_folder, '%.2d_pc.png' % i)
            visualize_pointcloud(pts, out_file=output_file, show=(i % 4 == 0))
Example #5
0
    def visualize(self, data):
        ''' Performs a visualization step for the data.

        Args:
            data (dict): data dictionary
        '''
        device = self.device

        encoder_inputs, raw_data = compose_inputs(
            data,
            mode='train',
            device=self.device,
            input_type=self.input_type,
            depth_pointcloud_transfer=self.depth_pointcloud_transfer,
        )
        world_mat = None
        if (self.model.encoder_world_mat is not None) \
            or self.gt_pointcloud_transfer in ('view', 'view_scale_model'):
            if 'world_mat' in raw_data:
                world_mat = raw_data['world_mat']
            else:
                world_mat = get_world_mat(data, device=device)
        gt_pc = compose_pointcloud(data,
                                   device,
                                   self.gt_pointcloud_transfer,
                                   world_mat=world_mat)
        batch_size = gt_pc.size(0)

        self.model.eval()
        with torch.no_grad():
            if self.model.encoder_world_mat is not None:
                out = self.model(encoder_inputs, world_mat=world_mat)
            else:
                out = self.model(encoder_inputs)

        if isinstance(out, tuple):
            out, _ = out

        for i in trange(batch_size):
            pc = gt_pc[i].cpu()
            vis.visualize_pointcloud(pc,
                                     out_file=os.path.join(
                                         self.vis_dir, '%03d_gt_pc.png' % i))

            pc = out[i].cpu()
            vis.visualize_pointcloud(pc,
                                     out_file=os.path.join(
                                         self.vis_dir, '%03d_pr_pc.png' % i))

            pc = encoder_inputs[i].cpu()
            vis.visualize_pointcloud(pc,
                                     out_file=os.path.join(
                                         self.vis_dir,
                                         '%03d_input_half_pc.png' % i))
Example #6
0
                pointcloud_out_file = os.path.join(
                    pointcloud_dir, '%s.ply' % i)
                export_pointcloud(pointcloud, pointcloud_out_file)
                out_file_dict['pointcloud'] = pointcloud_out_file

        if cfg['generation']['copy_input']:
            # Save inputs
            if input_type == 'img':
                for i in range(len(data['inputs'])):
                    inputs_path = os.path.join(in_dir, '%s.jpg' % i)
                    inputs = data['inputs'][i].squeeze(0).cpu()
                    visualize_data(inputs, 'img', inputs_path)
                    out_file_dict['in'] = inputs_path
                out_file = os.path.join(gt_dir, 'gt.png')
                pt = data['pointcloud'].squeeze(0).cpu().numpy()
                vis.visualize_pointcloud(pt, out_file=out_file)
            elif input_type == 'voxels':
                inputs_path = os.path.join(in_dir, '%s.off' % modelname)
                inputs = data['inputs'].squeeze(0).cpu()
                voxel_mesh = VoxelGrid(inputs).to_mesh()
                voxel_mesh.export(inputs_path)
                out_file_dict['in'] = inputs_path
            elif input_type == 'pointcloud':
                inputs_path = os.path.join(in_dir, '%s.ply' % modelname)
                inputs = data['inputs'].squeeze(0).cpu().numpy()
                export_pointcloud(inputs, inputs_path, False)
                out_file_dict['in'] = inputs_path

        # Copy to visualization directory for first vis_n_output samples
        c_it = model_counter[category_id]
        if c_it < vis_n_outputs:
Example #7
0
    def visualize(self, data):
        ''' Performs a visualization step for the data.

        Args:
            data (dict): data dictionary
        '''
        device = self.device

        batch_size = data['points'].size(0)

        shape = (32, 32, 32)
        p = make_3d_grid([-0.5] * 3, [0.5] * 3, shape).to(device)
        p = p.expand(batch_size, *p.size())

        encoder_inputs, raw_data = compose_inputs(
            data,
            mode='val',
            device=self.device,
            input_type=self.input_type,
            use_gt_depth_map=self.use_gt_depth_map,
            depth_map_mix=self.depth_map_mix,
            with_img=self.with_img,
            depth_pointcloud_transfer=self.depth_pointcloud_transfer,
            local=self.local)

        kwargs = {}
        with torch.no_grad():
            p_r = self.model.forward_halfway(p,
                                             encoder_inputs,
                                             sample=self.eval_sample,
                                             **kwargs)

        occ_hat = p_r.probs.view(batch_size, *shape)
        voxels_out = (occ_hat >= self.threshold).cpu().numpy()

        # visualize
        if self.local:
            encoder_inputs = encoder_inputs[None]

        if self.input_type == 'depth_pred':
            gt_mask = raw_data['mask']
            if self.with_img:
                encoder_inputs = encoder_inputs['depth']

            for i in trange(batch_size):
                if self.use_gt_depth_map:
                    input_img_path = os.path.join(self.vis_dir,
                                                  '%03d_in_gt.png' % i)
                else:
                    input_img_path = os.path.join(self.vis_dir,
                                                  '%03d_in_pr.png' % i)

                depth_map = encoder_inputs[i].cpu()
                depth_map = depth_to_L(depth_map, gt_mask[i].cpu())
                vis.visualize_data(depth_map, 'img', input_img_path)
                vis.visualize_voxels(
                    voxels_out[i], os.path.join(self.vis_dir, '%03d.png' % i))
        elif self.input_type == 'depth_pointcloud':
            for i in trange(batch_size):
                input_pointcloud_file = os.path.join(
                    self.vis_dir, '%03d_depth_pointcloud.png' % i)

                pc = encoder_inputs[i].cpu()
                if self.depth_pointcloud_transfer in ('view',
                                                      'view_scale_model'):
                    vis.visualize_pointcloud(pc,
                                             out_file=input_pointcloud_file,
                                             elev=15,
                                             azim=180)
                else:
                    vis.visualize_pointcloud(pc,
                                             out_file=input_pointcloud_file)
                vis.visualize_voxels(
                    voxels_out[i], os.path.join(self.vis_dir, '%03d.png' % i))