Example #1
0
def array_to_img(x, data_format=None, scale=True, dtype=None):
    if data_format is None:
        data_format = backend.image_data_format()
    if 'dtype' in generic_utils.getargspec(image.array_to_img).args:
        if dtype is None:
            dtype = backend.floatx()
        return image.array_to_img(x,
                                  data_format=data_format,
                                  scale=scale,
                                  dtype=dtype)
    return image.array_to_img(x, data_format=data_format, scale=scale)
Example #2
0
def data_augumentation(imgs, img_type):
    from image import array_to_img, img_to_array
    import cv2

    tmp = list()

    for x in xrange(imgs.shape[0]):
        img = imgs[x]
        if img_type == 'clabel':
            img = clabel_to_img(img, 128, 128)
        tmp.append(array_to_img(img))

    augmentated_list = rotate_img(tmp)
    augmentated_list = flip_img(augmentated_list)

    total = len(augmentated_list)
    augmentated_imgs = np.zeros([total, 1, 128, 128], dtype='float32')

    for x in xrange(total):
        if img_type == 'clabel':
            data_path = os.path.join('test/retrain/label/img' + str(x) +
                                     '.png')
            augmentated_list[x].save(data_path)
        else:
            data_path = os.path.join('test/retrain/raw/img' + str(x) + '.png')
            augmentated_list[x].save(data_path)

        augmentated_imgs[x] = img_to_array(augmentated_list[x]) / 255

    if img_type == 'raw':
        return augmentated_imgs
    if img_type == 'clabel':
        augmentated_clabels = categorize_label(augmentated_imgs)
        return augmentated_clabels
Example #3
0
def visualize_patches(data_path, output_path, img_type):
    from image import combine_img, array_to_img
    from predict import clabels_to_img

    if img_type not in {'raw', 'label'}:
        raise ValueError('Invalid img_type:', img_type)

    data = np.load(data_path)

    if img_type == 'label':
        imgs = clabels_to_img(data, 512, 512)
    else:
        imgs = data

    total = len(imgs)

    tmp_list = list()
    combined_imgs = np.zeros([total / 16, 1, imgs.shape[2], imgs.shape[3]])

    for img_array in imgs:
        img_array *= 255
        img = array_to_img(img_array, scale=False)
        tmp_list.append(img)

    for x in xrange(total / 16):
        combined_img = combine_img(tmp_list[16 * x:16 * (x + 1)])

        data_path = os.path.join(output_path, 'img' + str(x) + '.png')

        combined_img.save(data_path)
        print 'save image:', x + 1, '/', total / 16
Example #4
0
def visualize_ts(dir_path, imgs_test_name, imgs_true, imgs_pred):
    from image import array_to_img
    ts_path = 'ts/'
    dir_path = os.path.join(dir_path, ts_path)
    os.mkdir(dir_path)

    print 'Calculate threat score...'

    for x in xrange(imgs_test_name.shape[0]):
        ts_img = np.zeros([3, imgs_true.shape[2], imgs_true.shape[3]], dtype='uint8')

        ts_img[0] = imgs_true[x][0]
        ts_img[1] = imgs_pred[x][0]
        ts_img[2] = imgs_pred[x][0]

        ts_img *= 255
        ts = array_to_img(ts_img,scale=False)
        ts.save(os.path.join(dir_path,imgs_test_name[x]))
Example #5
0
def visualize(dir_path, imgs_test_name, imgs, visualize=True):
    from image import combine_img, array_to_img, img_to_array

    tmp_list = list()

    for img_array in imgs:
        img_array *= 255
        img = array_to_img(img_array, scale=False)
        tmp_list.append(img)

    total = imgs_test_name.shape[0]
    combined_imgs = np.zeros([total, 1, imgs.shape[2]*4, imgs.shape[3]*4], dtype = 'uint8')

    for x in xrange(total):
        combined_img = combine_img(tmp_list[16*x:16*(x+1)])
        if visualize == True:
            combined_img.save(os.path.join(dir_path, imgs_test_name[x]))
            print 'save label image:', x+1, '/', total

        combined_imgs[x] = img_to_array(combined_img) / 255

    return combined_imgs
Example #6
0
        exampleDir = ''.join([args.outdir, 'examples/'])
        if not os.path.exists(exampleDir):
            os.makedirs(exampleDir)
        np.random.seed(0)
        if args.subset:
            imPaths = np.random.choice(subset, 100)
        else:
            imPaths = np.random.choice(allPaths, 100)
        ims = np.asarray([
            getOneStatic(imPath, args.sampSize, args.newSize)
            for imPath in imPaths
        ])
        #ims = getBatch(101, allPaths, args.sampSize, args.newSize, args.threads)
        for i in range(100):
            image.array_to_img(ims[i] * 255.).save(''.join(
                [exampleDir, str(i), 'A.png']))
            image.array_to_img(cae.predict(ims[i:i + 1])[0] * 255.).save(
                ''.join([exampleDir, str(i), 'B.png']))

    # Perform PCA on encodings
    if args.subset:
        subset = list(pd.read_csv(args.subset, header=None)[0])
        subset_indices = [i for i, j in enumerate(allPaths) if j in subset]
        repAll = repAll[subset_indices]

    pca = PCA(n_components=args.K, whiten=True)
    reduced = pca.fit_transform(repAll)
    vari = pca.explained_variance_ratio_
    # nDims = np.where(np.cumsum(vari) > .98)[0][0]
    # reduced = reduced[:,:nDims]
    nDims = reduced.shape[1]
Example #7
0
# #############################

allPaths = image.list_pictures(imagePath)

repAll = np.zeros((len(allPaths), 1024))
for i in xrange(len(repAll)):
    print(i)
    for co in xrange(10):
        repAll[i, :] += sum(encode.predict(getOne(100, allPaths[i])))
    repAll[i, :] /= 1000.

# this shows the encoding and decoding for some random images
ims = getBatch(101, imagePath)
for i in xrange(100):
    image.array_to_img(ims[i] * 255.).save(outputName + '/' + str(i) + 'A.png')
    image.array_to_img(cae.predict(ims[i:i + 1])[0] *
                       255.).save(outputName + '/' + str(i) + 'B.png')

K = 1024
pca = PCA(n_components=K, whiten=True)
reduced = pca.fit_transform(repAll)
vari = pca.explained_variance_ratio_
# nDims = np.where(np.cumsum(vari) > .98)[0][0]
# reduced = reduced[:,:nDims]

nDims = reduced.shape[1]

with open(outputName + '_vari.txt', 'w') as fi:
    for x in np.cumsum(vari):
        fi.write(str(x) + '\n')