def __init__(self, img_size, range01=False, rgb_order=False, dummy=False): images_dir = settings.get_data_dir('office_webcam') super(OfficeWebcamDataset, self).__init__(img_size, range01, rgb_order, images_dir, dummy=dummy)
def __init__(self, img_size, range01=False, rgb_order=False, dummy=False): images_dir = settings.get_data_dir('amazon_dslr') super(OfficeAmazon2DslrDataset, self).__init__(img_size, range01, rgb_order, images_dir, dummy=dummy)
def __init__(self, img_size, range01=False, rgb_order=False, dummy=False, download=True): self.file_id = '0B4IapRTv9pJ1WGZVd1VDMmhwdlE' self.filename = "domain_adaptation_images.tar.gz" # download dataset. if download: download_file_from_google_drive( self.file_id, os.path.join('./dataset/', self.filename)) if not _check_exists(os.path.join('./dataset/', self.filename)): raise RuntimeError("Dataset not found." + " You can use download=True to download it") load_samples(os.path.join('./dataset/', self.filename)) images_dir = settings.get_data_dir('office_amazon') super(OfficeAmazonDataset, self).__init__(img_size, range01, rgb_order, images_dir, dummy=dummy)
def __init__(self, img_size, range01=False, rgb_order=False, dummy=False): test_dir = settings.get_data_dir('visda17_clf_test') file_list_path = os.path.join(test_dir, 'image_list.txt') super(TestDataset, self).__init__(img_size, range01, rgb_order, file_list_path, test_dir, has_ground_truth=False, dummy=dummy)
def __init__(self, img_size, range01=False, rgb_order=False, dummy=False): val_dir = settings.get_data_dir('visda17_clf_validation') file_list_path = os.path.join(val_dir, 'image_list.txt') super(ValidationDataset, self).__init__(img_size, range01, rgb_order, file_list_path, val_dir, has_ground_truth=True, dummy=dummy)
def __init__(self, img_size, range01=False, rgb_order=False, dummy=False): train_dir = settings.get_data_dir('visda17_clf_train') file_list_path = os.path.join(train_dir, 'image_list.txt') super(TrainDataset, self).__init__(img_size, range01, rgb_order, file_list_path, train_dir, has_ground_truth=True, dummy=dummy) self.object_ids = [] self.cam_yaw = [] self.light_yaw = [] self.cam_pitch = [] self.obj_id_to_idx = {} self.cam_yaw_to_idx = {} self.light_yaw_to_idx = {} self.cam_pitch_to_idx = {} for sample_idx, name in enumerate(self.names): fn, _ = os.path.splitext(name) object_id, _, tail = fn.partition('__') c_yaw, l_yaw, c_pitch = tail.split('_') c_yaw = float(c_yaw) l_yaw = float(l_yaw) c_pitch = float(c_pitch) obj_id_idx = self.obj_id_to_idx.setdefault(object_id, len(self.obj_id_to_idx)) c_yaw_idx = self.cam_yaw_to_idx.setdefault( c_yaw, len(self.cam_yaw_to_idx)) l_yaw_idx = self.light_yaw_to_idx.setdefault( l_yaw, len(self.light_yaw_to_idx)) c_pitch_idx = self.cam_pitch_to_idx.setdefault( c_pitch, len(self.cam_pitch_to_idx)) self.object_ids.append(obj_id_idx) self.cam_yaw.append(c_yaw_idx) self.light_yaw.append(l_yaw_idx) self.cam_pitch.append(c_pitch_idx) self.object_ids = np.array(self.object_ids, dtype=np.int32) self.cam_yaw = np.array(self.cam_yaw, dtype=np.int32) self.light_yaw = np.array(self.light_yaw, dtype=np.int32) self.cam_pitch = np.array(self.cam_pitch, dtype=np.int32) sample_ndxs = np.arange(len(self.object_ids)) self.samples_by_obj_id = [ sample_ndxs[self.object_ids == i] for i in range(len(self.obj_id_to_idx)) ] self.samples_by_cam_yaw = [ sample_ndxs[self.cam_yaw == i] for i in range(len(self.cam_yaw_to_idx)) ] self.samples_by_light_yaw = [ sample_ndxs[self.light_yaw == i] for i in range(len(self.light_yaw_to_idx)) ] self.samples_by_cam_pitch = [ sample_ndxs[self.cam_pitch == i] for i in range(len(self.cam_pitch_to_idx)) ] self.obj_X = self.ObjectImageAccessor(self)