# construct string by attributes
        formated_str = '   {gender} - age {lowage}-{highage},'

        # mustache and beard detection
        if details['Mustache']['Value'] and facedeets['Beard']['Value']:
            formated_str += ' with beard and mustache,'
        elif details['Mustache']['Value']:
            formated_str += ' with mustache,'
        elif details['Beard']['Value']:
            formated_str += ' with beard,'

        # Sunglasses/eyeglasses detection
        if details['Sunglasses']['Value']:
            formated_str += ' wearing sunglasses,'
        elif details['Eyeglasses']['Value']:
            formated_str += ' wearing glasses,'

        formated_str += ' looks {emotion}'

        print(
            formated_str.format(
                gender=details['Gender']['Value'],
                lowage=details['AgeRange']['Low'],
                highage=details['AgeRange']['High'],
                emotion=details['Emotions'][0]['Type'].lower()
            )
        )

image = get_image_from_file('images/team1.jpeg')
facial_analysis(image)
# facial_analysis_data(image)
Example #2
0
import boto3
from pprint import pprint
from image_helper import get_image_from_file, get_image_from_url


def compare_faces_data(image_source, image_target):
    client = boto3.client('rekognition')
    response = client.compare_faces(SimilarityThreshold=80,
                                    SourceImage={'Bytes': image_source},
                                    TargetImage={'Bytes': image_target})
    pprint(response)


def compare_faces(image_source, image_target):
    client = boto3.client('rekognition')
    response = client.compare_faces(SimilarityThreshold=80,
                                    SourceImage={'Bytes': image_source},
                                    TargetImage={'Bytes': image_target})
    for faceMatch in response['FaceMatches']:
        similarity = faceMatch['Similarity']
        print(f'Matches with {round(similarity, 2)}% confidence')


url_img_src = 'images/eu.jpg'
url_img_target = 'images/role1.jpeg'

img_src = get_image_from_file(url_img_src)
img_target = get_image_from_file(url_img_target)

# compare_faces(img_src, img_target)
compare_faces_data(img_src, img_target)
import boto3
from pprint import pprint
from image_helper import get_image_from_file, get_image_from_url


def detect_text_data(image_bytes):
    client = boto3.client('rekognition')
    response = client.detect_text(Image={'Bytes': image_bytes})
    pprint(response)


def detect_text(image_bytes):
    client = boto3.client('rekognition')
    response = client.detect_text(Image={'Bytes': image_bytes})
    textDetections = response['TextDetections']
    for text in textDetections:
        print('Detected text:' + text['DetectedText'])
        print('Confidence: ' + "{:.2f}".format(text['Confidence']) + "%")
        print()
    return len(textDetections)


document = get_image_from_file('images/cnh.jpg')
card = get_image_from_file('images/card.png')
detect_text(card)
# detect_text_data(document)
Example #4
0
import boto3
from pprint import pprint
from image_helper import get_image_from_file, get_image_from_url

def detect_labels_data(image_bytes):
    client = boto3.client('rekognition')
    response = client.detect_labels(Image={'Bytes': image_bytes}, MinConfidence=50)
    pprint(response)

def detect_labels(image_bytes):
    client = boto3.client('rekognition')
    response = client.detect_labels(Image={'Bytes': image_bytes}, MinConfidence=50)
    print('\n\nLabels:')
    for label in response['Labels']:
        label_name = label['Name']
        label_confidence = label['Confidence']
        print(f' {label_name}  --  {round(label_confidence, 2)}%')


url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Av_Francisco_Glic%C3%A9rio_-_Campinas_SP_-_panoramio.jpg/1200px-Av_Francisco_Glic%C3%A9rio_-_Campinas_SP_-_panoramio.jpg'
image = get_image_from_file('images/role1.jpeg')

detect_labels(image)
# detect_labels_data(image)