Example #1
0
def plot_coverage_maps(cov_array,
                       cc_fits,
                       colorbar_label="coverage",
                       cmap="hsv"):
    ccimage = create_clean_image_from_fits_file(cc_fits)

    beam = ccimage.beam
    rms = rms_image(ccimage)
    print(rms)
    cov_array[cov_array == 0] = np.nan
    blc, trc = find_bbox(ccimage.image, 1.0 * rms, 10)
    fig = iplot(ccimage.image,
                colors=cov_array,
                x=ccimage.x,
                y=ccimage.y,
                min_abs_level=3.0 * rms,
                beam=beam,
                show_beam=True,
                blc=blc,
                trc=trc,
                close=False,
                colorbar_label=colorbar_label,
                show=True,
                cmap=cmap)
    return fig
Example #2
0
    def create_boot_pang_errors(self, cred_mass=0.68, n_sigma=None):
        """
        Create dictionary with images of PANG errors calculated from bootstrap
        PANG maps.

        :param cred_mass: (optional)
            Credibility mass. (default: ``0.68``)
        :param n_sigma: (optional)
            Sigma clipping for mask. If ``None`` then use instance's value.
            (default: ``None``)
        :return:
            Dictionary with keys - frequencies & values - instances of ``Image``
            class with error maps.
        """
        print(
            "Calculating maps of PANG errors for each band using bootstrapped"
            " PANG maps...")
        result = dict()
        if n_sigma is not None:
            self.set_common_mask(n_sigma)

        # Fetch common size `I` map on highest frequency for plotting PANG error
        # maps
        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']
        rms = rms_image(i_image)
        blc, trc = find_bbox(i_image.image,
                             2. * rms,
                             delta=int(i_image._beam.beam[0]))
        for i, freq in enumerate(self.freqs):
            images = self.boot_images.create_pang_images(freq=freq,
                                                         mask=self._cs_mask)
            pang_images = Images()
            pang_images.add_images(images)
            error_image = pang_images.create_error_image(cred_mass=cred_mass)
            # As this errors are used for linear fit judgement only - add EVPA
            # absolute calibration error in quadrature
            evpa_error = np.deg2rad(self.sigma_evpa[i]) * np.ones(
                error_image.image.shape)
            error_image.image = np.sqrt((error_image.image)**2. +
                                        evpa_error**2.)
            result[freq] = error_image
            fig = iplot(i_image.image,
                        error_image.image,
                        x=i_image.x,
                        y=i_image.y,
                        min_abs_level=3. * rms,
                        colors_mask=self._cs_mask,
                        color_clim=[0, 1],
                        blc=blc,
                        trc=trc,
                        beam=self.common_beam,
                        colorbar_label='sigma EVPA, [rad]',
                        slice_points=None,
                        show_beam=True,
                        show=False,
                        cmap='hsv')
            self.figures['EVPA_sigma_boot_{}'.format(freq)] = fig
        self.evpa_sigma_boot_dict = result
        return result
Example #3
0
def clean_original_data(uvdata_dict,
                        data_dir,
                        beam=None,
                        plot=False,
                        mapsize_clean=(512, 0.1),
                        outfname_postfix=None):
    if not isinstance(mapsize_clean, dict):
        assert len(mapsize_clean) == 2
        mapsize_clean = {band: mapsize_clean for band in bands}
    for band in bands:
        print("Band - {}".format(band))
        for stokes in ('I', 'Q', 'U'):
            print("Stokes - {}".format(stokes))
            if outfname_postfix is None:
                outfname = "cc_{}_{}.fits".format(band, stokes)
            else:
                outfname = "cc_{}_{}_{}.fits".format(band, stokes,
                                                     outfname_postfix)
            print("Cleaning {} to {}".format(uvdata_dict[band], outfname))
            clean_difmap(fname=uvdata_dict[band],
                         outfname=outfname,
                         stokes=stokes.lower(),
                         path=data_dir,
                         outpath=data_dir,
                         mapsize_clean=mapsize_clean[band],
                         path_to_script=path_to_script,
                         show_difmap_output=False,
                         beam_restore=beam)

        # Rarely need this one
        if plot:
            if outfname_postfix is None:
                outfname = "cc_{}_{}.fits".format(band, "I")
            else:
                outfname = "cc_{}_{}_{}.fits".format(band, "I",
                                                     outfname_postfix)
            ccimage = create_clean_image_from_fits_file(
                os.path.join(data_dir, outfname))

            beam = ccimage.beam
            rms = rms_image(ccimage)
            blc, trc = find_bbox(ccimage.image, 1.0 * rms, 10)
            fig = iplot(ccimage.image,
                        x=ccimage.x,
                        y=ccimage.y,
                        min_abs_level=2.0 * rms,
                        beam=beam,
                        show_beam=True,
                        blc=blc,
                        trc=trc,
                        close=False,
                        colorbar_label="Jy/beam",
                        show=True)
            if outfname_postfix is None:
                outfname = "cc_{}.png".format(band)
            else:
                outfname = "cc_{}_{}.png".format(band, outfname_postfix)
            fig.savefig(os.path.join(data_dir, outfname))
Example #4
0
            cellsize = 0.5
        elif freq == 8.1:
            cellsize = 0.2

        clean_difmap(uv_fits_save_fname,
                     cc_fits_save_fname,
                     'I', (1024, cellsize),
                     path=out_dir,
                     path_to_script=path_to_script,
                     show_difmap_output=False,
                     outpath=out_dir)

        ccimage = create_clean_image_from_fits_file(
            os.path.join(out_dir, cc_fits_save_fname))
        beam = ccimage.beam
        rms = rms_image(ccimage)
        blc, trc = find_bbox(ccimage.image, rms, 10)
        comps = import_difmap_model(out_dfm_model_fn, out_dir)

        plot_fitted_model(os.path.join(out_dir, uv_fits_save_fname),
                          comps,
                          savefig=os.path.join(
                              out_dir, "difmap_model_uvplot_{}_{}.png".format(
                                  str(i).zfill(2), freq)))

        fig = iplot(ccimage.image,
                    x=ccimage.x,
                    y=ccimage.y,
                    min_abs_level=3 * rms,
                    beam=beam,
                    show_beam=True,
Example #5
0
    # i_image_zeroed[mask] = 0.
    # y, x = np.nonzero(i_image_zeroed)
    # y -= i_image.pixref[0]
    # x -= i_image.pixref[1]
    # distances = np.sqrt(x ** 2. + y ** 2.)
    # max_dist = int(sorted(distances)[-1])

    beam = i_image.beam
    pixsize = abs(i_image.pixsize[0]) / mas_to_rad
    beam = (beam[0] / pixsize, beam[1] / pixsize, beam[2])

    # cc_fits = '/home/ilya/vlbi_errors/examples/X/1226+023/I/boot/68/original_cc.fits'
    # cc_fits = '/home/ilya/vlbi_errors/examples/L/1038+064/rms/68/original_cc.fits'
    # cc_fits = '/home/ilya/vlbi_errors/examples/L/1633+382/rms/68/original_cc.fits'
    image = create_image_from_fits_file(os.path.join(data_dir, cc_fits))
    rms = image_ops.rms_image(image)
    data = image.image.copy()
    from scipy.ndimage.filters import gaussian_filter
    data = gaussian_filter(data, 5)
    mask = data < 3. * rms
    data[mask] = 0
    data[~mask] = 1

    skel, distance = medial_axis(data, return_distance=True)
    dist_on_skel = distance * skel

    # Plot area and skeleton
    fig, (ax1, ax2) = plt.subplots(1,
                                   2,
                                   figsize=(8, 4),
                                   sharex=True,
Example #6
0
clean_n(uv_fits_path,
        out_fits_fname,
        'I', (512, 0.1),
        niter=niter,
        path_to_script=path_to_script,
        outpath=data_dir,
        show_difmap_output=True,
        shift=(1000, 0))

image = create_image_from_fits_file(out_fits_path)
plt.matshow(image.image)
patch = image.image[250:300, 250:300]
_, _, _, C, A = variogram(patch)
# Image already shifted so don't need rms_image_shifted here
rms = rms_image(image)

from image import plot as iplot
ccimage = create_clean_image_from_fits_file(beam_fits_path)
fig = iplot(image.image,
            image.image,
            x=image.x,
            y=image.y,
            show_beam=True,
            min_abs_level=rms,
            cmap='viridis',
            beam=ccimage.beam,
            beam_face_color='black',
            blc=(250, 250),
            trc=(300, 300))
# fig.savefig(os.path.join(data_dir, 'ngc315_niter1000_shifted1000_patch.pdf'),
Example #7
0
    def analyze_rotm_boot(self, n_sigma=None, cred_mass=0.68, rotm_slices=None,
                          colors_clim=None, slice_ylim=None,
                          use_conv_image_in_boot_slice=True):
        print("Estimate RM map and it's error using bootstrap...")

        if rotm_slices is None:
            rotm_slices = self.rotm_slices
        if n_sigma is not None:
            self.set_common_mask(n_sigma)
        # This accounts for D-terms and EVPA calibration errors.
        sigma_pangs_dict = self.create_boot_pang_errors()
        sigma_pang_arrays = [sigma_pangs_dict[freq].image for freq in
                             self.freqs]
        # This is RM image made using bootstrap-based PANG errors that
        # originally account for D-terms and EVPA calibration errors.
        rotm_image, _, chisq_image = \
            self.original_cs_images.create_rotm_image(sigma_pang_arrays,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      mask_on_chisq=True)
        self._rotm_image_boot = rotm_image
        self._rotm_chisq_image_boot = chisq_image

        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']
        rms = rms_image(i_image)
        blc, trc = find_bbox(i_image.image, 2.*rms,
                             delta=int(i_image._beam.beam[0]/2))
        fig = iplot(i_image.image, rotm_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    color_clim=colors_clim, blc=blc, trc=trc, beam=self.common_beam,
                    slice_points=rotm_slices, cmap='viridis',
                    show_beam=True, show=False, beam_place="ul")
        self.figures['rotm_image_boot'] = fig
        fig = iplot(i_image.image, chisq_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    color_clim=[0., self._chisq_crit], blc=blc, trc=trc, beam=self.common_beam,
                    colorbar_label='Chi-squared', slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis')
        self.figures['rotm_chisq_image_boot'] = fig

        self._boot_rotm_images =\
            self.boot_images.create_rotm_images(mask=self._cs_mask,
                                                mask_on_chisq=False,
                                                sigma_evpa=self.sigma_evpa)
        sigma_rotm_image =\
            self._boot_rotm_images.create_error_image(cred_mass=cred_mass)
        self._rotm_image_sigma_boot = sigma_rotm_image

        # Now ``self._boot_rotm_images`` doesn't contain contribution from
        # EVPA calibration error
        self._boot_rotm_images =\
            self.boot_images.create_rotm_images(mask=self._cs_mask,
                                                mask_on_chisq=False,
                                                sigma_evpa=None)
        sigma_rotm_image_grad =\
            self._boot_rotm_images.create_error_image(cred_mass=cred_mass)
        self._rotm_image_sigma_boot_grad = sigma_rotm_image_grad


        # This sigma take absolute EVPA calibration uncertainty into
        # account
        fig = iplot(i_image.image, sigma_rotm_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    outfile='rotm_image_boot_sigma', outdir=self.data_dir,
                    color_clim=[0, 200], blc=blc, trc=trc, beam=self.common_beam,
                    slice_points=rotm_slices, cmap='viridis', beam_place='ul',
                    show_beam=True, show=False)
        self.figures['rotm_image_boot_sigma'] = fig
        # This sigma RM doesn't include EVPA
        fig = iplot(i_image.image, sigma_rotm_image_grad.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    outfile='rotm_image_boot_sigma', outdir=self.data_dir,
                    color_clim=[0, 200], blc=blc, trc=trc, beam=self.common_beam,
                    slice_points=rotm_slices, cmap='viridis', beam_place='ul',
                    show_beam=True, show=False)
        self.figures['rotm_image_boot_sigma_grad'] = fig

        if rotm_slices is not None:
            self.figures['slices_boot'] = dict()
            self.figures['slices_boot_conv'] = dict()
            for rotm_slice in rotm_slices:
                rotm_slice_ = i_image._convert_coordinates(rotm_slice[0],
                                                           rotm_slice[1])
                if use_conv_image_in_boot_slice:
                    rotm_image_ = self._rotm_image_conv
                else:
                    rotm_image_ = rotm_image
                # ``self._boot_rotm_images`` doesn't contain contribution from
                # EVPA calibration error - so used for RM gradient searches

                fig = analyze_rotm_slice(rotm_slice_, rotm_image_,
                                         rotm_images=self._boot_rotm_images,
                                         outdir=self.data_dir,
                                         beam_width=int(i_image._beam.beam[0]),
                                         outfname="ROTM_{}_slice_boot".format(rotm_slice),
                                         ylim=slice_ylim, show_dots_boot=True,
                                         # fig=self.figures['slices_conv'][str(rotm_slice)],
                                         fig=None)
                self.figures['slices_boot'][str(rotm_slice)] = fig

                fig = analyze_rotm_slice(rotm_slice_, rotm_image_,
                                         rotm_images=self._boot_rotm_images,
                                         outdir=self.data_dir,
                                         beam_width=int(i_image._beam.beam[0]),
                                         outfname="ROTM_{}_slice_boot".format(rotm_slice),
                                         ylim=slice_ylim, show_dots_boot=True,
                                         fig=self.figures['slices_conv'][str(rotm_slice)],
                                         # fig=None,
                                         )
                self.figures['slices_boot_conv'][str(rotm_slice)] = fig

        return rotm_image, sigma_rotm_image
Example #8
0
    def analyze_rotm_conv(self, sigma_evpa=None, sigma_d_term=None,
                          rotm_slices=None, colors_clim=None, n_sigma=None,
                          pxls_plot=None, plot_points=None, slice_ylim=None):
        print("Estimate RM map and it's error using conventional method...")

        if sigma_evpa is None:
            sigma_evpa = self.sigma_evpa
        if sigma_d_term is None:
            sigma_d_term = self.sigma_d_term
        if rotm_slices is None:
            rotm_slices = self.rotm_slices
        if n_sigma is not None:
            self.set_common_mask(n_sigma)

        # Find EVPA error for each frequency
        print("Calculating maps of PANG errors for each band using Hovatta's"
              " approach...")
        # Fetch common size `I` map on highest frequency for plotting PANG error
        # maps
        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']

        if pxls_plot is not None:
            pxls_plot = [i_image._convert_coordinate(pxl) for pxl in pxls_plot]

        rms = rms_image(i_image)
        blc, trc = find_bbox(i_image.image, 2.*rms,
                             delta=int(i_image._beam.beam[0]))

        for i, freq in enumerate(self.freqs):
            n_ant = len(self.uvdata_dict[freq].antennas)
            n_if = self.uvdata_dict[freq].nif
            d_term = sigma_d_term[i]
            s_evpa = sigma_evpa[i]

            # Get number of scans
            if self.n_scans is not None:
                try:
                    # If `NX` table is present
                    n_scans = len(self.uvdata_dict[freq].scans)
                except TypeError:
                    scans_dict = self.uvdata_dict[freq].scans_bl
                    scan_lengths = list()
                    for scans in scans_dict.values():
                        if scans is not None:
                            scan_lengths.append(len(scans))
                    n_scans = mode(scan_lengths)[0][0]
            else:
                n_scans = self.n_scans[i]

            q = self.cc_cs_image_dict[freq]['Q']
            u = self.cc_cs_image_dict[freq]['U']
            i = self.cc_cs_image_dict[freq]['I']

            # We need ``s_evpa = 0`` for testing RM gradient significance but
            # ``s_evpa != 0`` for calculating RM errors
            pang_std, ppol_std = hovatta_find_sigma_pang(q, u, i, s_evpa,
                                                         d_term, n_ant, n_if,
                                                         n_scans)
            self.evpa_sigma_dict[freq] = pang_std
            fig = iplot(i_image.image, pang_std, x=i_image.x, y=i_image.y,
                        min_abs_level=3. * rms, colors_mask=self._cs_mask,
                        color_clim=[0, 1], blc=blc, trc=trc,
                        beam=self.common_beam, colorbar_label='sigma EVPA, [rad]',
                        show_beam=True, show=False)
            self.figures['EVPA_sigma_{}'.format(freq)] = fig

        sigma_pang_arrays = [self.evpa_sigma_dict[freq] for freq in self.freqs]
        sigma_pang_arrays_grad = [np.sqrt(self.evpa_sigma_dict[freq]**2 -
                                          np.deg2rad(self.sigma_evpa[i])**2) for
                                  i, freq in enumerate(self.freqs)]
        rotm_image, sigma_rotm_image, chisq_image =\
            self.original_cs_images.create_rotm_image(sigma_pang_arrays,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      plot_pxls=pxls_plot,
                                                      outdir=self.data_dir,
                                                      mask_on_chisq=False)
        rotm_image_grad, sigma_rotm_image_grad, _ =\
            self.original_cs_images.create_rotm_image(sigma_pang_arrays_grad,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      plot_pxls=pxls_plot,
                                                      outdir=self.data_dir,
                                                      mask_on_chisq=False)
        self._rotm_image_conv = rotm_image
        self._rotm_image_conv_grad = rotm_image_grad
        self._rotm_image_sigma_conv = sigma_rotm_image
        self._rotm_image_sigma_conv_grad = sigma_rotm_image_grad
        self._rotm_chisq_image_conv = chisq_image

        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']
        uv_fits_path = self.uvfits_dict[self.freqs[-1]]
        image_fits_path = self.cc_cs_fits_dict[self.freqs[-1]]['I']
        # RMS using Hovatta-style
        rms = rms_image_shifted(uv_fits_path, image_fits=image_fits_path,
                                path_to_script=self.path_to_script)
        blc, trc = find_bbox(i_image.image, 2.*rms,
                             delta=int(i_image._beam.beam[0]))
        fig = iplot(i_image.image, rotm_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    color_clim=colors_clim, blc=blc, trc=trc,
                    beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, show_points=plot_points,
                    cmap='viridis')
        self.figures['rotm_image_conv'] = fig
        fig = iplot(i_image.image, sigma_rotm_image.image, x=i_image.x,
                    y=i_image.y, min_abs_level=3. * rms,
                    colors_mask=self._cs_mask, color_clim=[0, 200], blc=blc,
                    trc=trc, beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis', beam_place='ul')
        self.figures['rotm_image_conv_sigma'] = fig
        fig = iplot(i_image.image, sigma_rotm_image_grad.image, x=i_image.x,
                    y=i_image.y, min_abs_level=3. * rms,
                    colors_mask=self._cs_mask, color_clim=[0, 200], blc=blc,
                    trc=trc, beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis', beam_place='ul')
        self.figures['rotm_image_conv_sigma_grad'] = fig
        fig = iplot(i_image.image, chisq_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    outfile='rotm_chisq_image_conv', outdir=self.data_dir,
                    color_clim=[0., self._chisq_crit], blc=blc, trc=trc,
                    beam=self.common_beam,
                    colorbar_label='Chi-squared', slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis')
        self.figures['rotm_chisq_image_conv'] = fig

        if rotm_slices is not None:
            self.figures['slices_conv'] = dict()
            for rotm_slice in rotm_slices:
                rotm_slice_ = i_image._convert_coordinates(rotm_slice[0],
                                                           rotm_slice[1])
                # Here we use RM image error calculated using PANG errors
                # without contribution of the EVPA calibration errors.
                fig = analyze_rotm_slice(rotm_slice_, rotm_image,
                                         sigma_rotm_image=sigma_rotm_image_grad,
                                         outdir=self.data_dir,
                                         beam_width=int(i_image._beam.beam[0]),
                                         outfname="ROTM_{}_slice".format(rotm_slice),
                                         ylim=slice_ylim)
                self.figures['slices_conv'][str(rotm_slice)] = fig

        return rotm_image, sigma_rotm_image
Example #9
0
    def analyze_rotm_boot(self,
                          n_sigma=None,
                          cred_mass=0.68,
                          rotm_slices=None,
                          colors_clim=None,
                          slice_ylim=None,
                          use_conv_image_in_boot_slice=True):
        print("Estimate RM map and it's error using bootstrap...")

        if rotm_slices is None:
            rotm_slices = self.rotm_slices
        if n_sigma is not None:
            self.set_common_mask(n_sigma)
        sigma_pangs_dict = self.create_boot_pang_errors()
        sigma_pang_arrays = [
            sigma_pangs_dict[freq].image for freq in self.freqs
        ]
        rotm_image, _, chisq_image = \
            self.original_cs_images.create_rotm_image(sigma_pang_arrays,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      mask_on_chisq=True)
        self._rotm_image_boot = rotm_image
        self._rotm_chisq_image_boot = chisq_image

        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']
        rms = rms_image(i_image)
        blc, trc = find_bbox(i_image.image,
                             2. * rms,
                             delta=int(i_image._beam.beam[0]))
        fig = iplot(i_image.image,
                    rotm_image.image,
                    x=i_image.x,
                    y=i_image.y,
                    min_abs_level=3. * rms,
                    colors_mask=self._cs_mask,
                    color_clim=colors_clim,
                    blc=blc,
                    trc=trc,
                    beam=self.common_beam,
                    slice_points=rotm_slices,
                    cmap='hsv',
                    show_beam=True,
                    show=False)
        self.figures['rotm_image_boot'] = fig
        fig = iplot(i_image.image,
                    chisq_image.image,
                    x=i_image.x,
                    y=i_image.y,
                    min_abs_level=3. * rms,
                    colors_mask=self._cs_mask,
                    color_clim=[0., self._chisq_crit],
                    blc=blc,
                    trc=trc,
                    beam=self.common_beam,
                    colorbar_label='Chi-squared',
                    slice_points=rotm_slices,
                    show_beam=True,
                    show=False)
        self.figures['rotm_chisq_image_boot'] = fig

        self._boot_rotm_images =\
            self.boot_images.create_rotm_images(mask=self._cs_mask,
                                                mask_on_chisq=False)
        sigma_rotm_image =\
            self._boot_rotm_images.create_error_image(cred_mass=cred_mass)
        self._rotm_image_sigma_boot = sigma_rotm_image

        # This sigma doesn't take absolute EVPA calibration uncertainty into
        # account
        fig = iplot(i_image.image,
                    sigma_rotm_image.image,
                    x=i_image.x,
                    y=i_image.y,
                    min_abs_level=3. * rms,
                    colors_mask=self._cs_mask,
                    outfile='rotm_image_boot_sigma',
                    outdir=self.data_dir,
                    color_clim=[0, 200],
                    blc=blc,
                    trc=trc,
                    beam=self.common_beam,
                    slice_points=rotm_slices,
                    cmap='hsv',
                    show_beam=True,
                    show=False,
                    beam_face_color='black')
        self.figures['rotm_image_boot_sigma'] = fig

        if rotm_slices is not None:
            self.figures['slices_boot'] = dict()
            for rotm_slice in rotm_slices:
                rotm_slice_ = i_image._convert_coordinates(
                    rotm_slice[0], rotm_slice[1])
                if use_conv_image_in_boot_slice:
                    rotm_image_ = self._rotm_image_conv
                else:
                    rotm_image_ = rotm_image
                fig = analyze_rotm_slice(
                    rotm_slice_,
                    rotm_image_,
                    rotm_images=self._boot_rotm_images,
                    outdir=self.data_dir,
                    beam_width=int(i_image._beam.beam[0]),
                    outfname="ROTM_{}_slice_boot".format(rotm_slice),
                    ylim=slice_ylim,
                    show_dots_boot=False,
                    fig=self.figures['slices_conv'][str(rotm_slice)])
                self.figures['slices_boot'][str(rotm_slice)] = fig

        return rotm_image, sigma_rotm_image
Example #10
0
def abc_simulations(param,
                    z,
                    freqs,
                    uv_fits_templates,
                    cc_images,
                    pickle_history,
                    out_dir=None):
    """
    Simulation function for ABC. Simulates data given parameters (``b, n, los``)
    and returns the vector of the summary statistics.

    :param b:
        Value of the magnetic field at 1 pc [G].
    :param n:
        Value of particle density at 1 pc [cm^(-3)].
    :param los:
        Jet angle to the line of site [rad].
    :param z:
        Redshift of the source.
    :param freqs:
        Iterable of frequencies.
    :param uv_fits_templates:
        Iterable of paths to FITS files with self-calibrated uv-data. In order
        of ``freqs``.
    :param cc_images:
        Iterable of paths to FITS files with CLEAN maps. In order of ``freqs``.
    :param out_dir: (optional)
        Directory to store files. If ``None`` then use CWD. (default: ``None``)
    :param pickle_history:
        Path to pickle file with dictionary of simulations history.

    :return:
        Summary statistics. E.g. "observed" core flux at highest frequency,
        "observed" core size at highest frequency, "observed" ellipticity of the
        core at highest frequency, core shift between frequencies (distance
        between "core shift - frequency" curves).
    """
    if out_dir is None:
        out_dir = os.getcwd()
    else:
        # FIXME: Create directory if it doesn't exist
        if not os.path.exists(out_dir):
            pass

    result_dict = dict()
    b, n, los = np.exp(param)
    p = Parameters(b, n, los)
    with open(pickle_history, 'r') as fo:
        history = pickle.load(fo)
    print("Running simulations with b={}, n={}, los={}".format(b, n, los))
    for freq, uv_fits_template, cc_image in zip(freqs, uv_fits_templates,
                                                cc_images):

        # Cleaning old results if any
        simulated_maps_old = glob.glob(os.path.join(exe_dir, "map*.txt"))
        for to_remove in simulated_maps_old:
            os.unlink(to_remove)

        # Checking if simulations on highest frequency are done. If so then use
        # scaled image parameters
        if freqs[0] in history[p].keys():
            pixel_size_mas = history[p][
                freqs[0]]["pixel_size_mas"] * freqs[0] / freq
            number_of_pixels = history[p][
                freqs[0]]["number_of_pixels"] * freq / freqs[0]
            map_size = (number_of_pixels, pixel_size_mas)
            print("Using scaled image parameters: {}, {}".format(
                number_of_pixels, pixel_size_mas))
        else:
            pixel_size_mas = 0.01
            number_of_pixels = 400
            map_size = None

        update_dict = {
            "jet": {
                "bfield": {
                    "parameters": {
                        "b_1": b
                    }
                },
                "nfield": {
                    "parameters": {
                        "n_1": n
                    }
                }
            },
            "observation": {
                "los_angle": los,
                "frequency_ghz": freq,
                "redshift": z
            },
            "image": {
                "pixel_size_mas": pixel_size_mas,
                "number_of_pixels": number_of_pixels
            }
        }
        update_config(cfg_file, update_dict)

        # FIXME: Handle ``FailedFindBestImageParamsException`` during ABC run
        simulation_params = run_simulations(cfg_file,
                                            path_to_executable,
                                            map_size=map_size)

        # Find total flux on simulated image
        image = os.path.join(exe_dir, "map_i.txt")
        image = np.loadtxt(image)

        # Rare case of strange fluxes
        image[image < 0] = 0
        image[image > 10.0] = 0

        # Total model flux at current frequency
        total_flux = image.sum()
        # Maximum model pixel flux at current frequency
        max_flux = image.max()
        cc_image = create_clean_image_from_fits_file(cc_image)
        noise_factor = 1.0

        initial_dfm_model = os.path.join(main_dir, 'initial_cg.mdl')
        out_dfm_model_fn = "bk_{}.mdl".format(freq)
        uv_fits_save_fname = "bk_{}.fits".format(freq)
        modelfit_simulation_result(exe_dir,
                                   initial_dfm_model,
                                   noise_factor=noise_factor,
                                   out_dfm_model_fn=out_dfm_model_fn,
                                   out_dir=out_dir,
                                   params=simulation_params,
                                   uv_fits_save_fname=uv_fits_save_fname,
                                   uv_fits_template=uv_fits_template)

        # Find measured and true distance of core to jet component
        dr_obs = find_core_separation_from_jet_using_difmap_model(
            os.path.join(out_dir, out_dfm_model_fn))
        dr_true = find_core_separation_from_center_using_simulations(
            os.path.join(exe_dir, "map_i.txt"), simulation_params)

        # This means something wrong with jetshow
        if total_flux < 0:
            print("b = {}, n = {}, los = {}".format(b, n, los))
            open(
                os.path.join(
                    out_dir,
                    "total_disaster_{}_{}_{}_{}.txt".format(b, n, los, freq)),
                'a').close()
            raise TotalDisasterException

        # Plot map with components superimposed
        cc_fits_save_fname = "bk_cc_{}.fits".format(freq)

        # For 18 cm we need large pixel size
        cellsize = 0.1
        if freq == 1.665:
            cellsize = 0.5
        elif freq == 8.1:
            cellsize = 0.2

        clean_difmap(uv_fits_save_fname,
                     cc_fits_save_fname,
                     'I', (1024, cellsize),
                     path=out_dir,
                     path_to_script=path_to_script,
                     show_difmap_output=False,
                     outpath=out_dir)

        ccimage = create_clean_image_from_fits_file(
            os.path.join(out_dir, cc_fits_save_fname))
        beam = ccimage.beam
        rms = rms_image(ccimage)
        blc, trc = find_bbox(ccimage.image, rms, 10)
        comps = import_difmap_model(out_dfm_model_fn, out_dir)

        plot_fitted_model(os.path.join(out_dir, uv_fits_save_fname),
                          comps,
                          savefig=os.path.join(
                              out_dir,
                              "difmap_model_uvplot_{}.png".format(freq)))

        fig = iplot(ccimage.image,
                    x=ccimage.x,
                    y=ccimage.y,
                    min_abs_level=3 * rms,
                    beam=beam,
                    show_beam=True,
                    blc=blc,
                    trc=trc,
                    components=comps,
                    close=True,
                    colorbar_label="Jy/beam")
        fig.savefig(os.path.join(out_dir, "cc_{}.png".format(freq)))

        # Move simulated images to data directory
        cut_image(os.path.join(exe_dir, "map_i.txt"))
        cut_image(os.path.join(exe_dir, "map_l.txt"))
        cut_image(os.path.join(exe_dir, "map_q.txt"))
        cut_image(os.path.join(exe_dir, "map_u.txt"))
        cut_image(os.path.join(exe_dir, "map_v.txt"))
        cut_image(os.path.join(exe_dir, "map_tau.txt"))
        for name in ('i', 'q', 'u', 'v', 'tau', 'l'):
            shutil.move(
                os.path.join(exe_dir, "map_{}.txt".format(name)),
                os.path.join(out_dir, "map_{}_{}.txt".format(name, freq)))

        # Calculate some info
        dr_pc = distance_from_SMBH(dr_true, los, z=z)
        b_core = b_field(b, dr_pc)
        t_syn_years = t_syn(b_core, freq) / (np.pi * 10**7)
        result_dict[freq] = dict()
        to_results = {
            "dr_obs":
            dr_obs,
            "dr_true":
            dr_true,
            "flux":
            total_flux,
            "flux_obs":
            comps[0].p[0],
            "bmaj_obs":
            comps[0].p[3],
            "tb_difmap":
            np.log10(tb_comp(comps[0].p[0], comps[0].p[3], freq, z=z)),
            "tb_pix":
            np.log10(
                tb(max_flux,
                   freq,
                   simulation_params[u'image'][u'pixel_size_mas'],
                   z=z)),
            "b_core":
            b_core,
            "dr_core_pc":
            dr_pc,
            "t_syn_core":
            t_syn_years,
            "pixel_size_mas":
            simulation_params[u'image'][u'pixel_size_mas'],
            "number_of_pixels":
            simulation_params[u'image'][u'number_of_pixels']
        }
        result_dict[freq] = to_results

        history[p] = result_dict
        with open(pickle_history, 'w') as fo:
            pickle.dump(history, fo)

    return create_summary_from_result_dict(result_dict, (0.3, 0.2, 0.1))