Example #1
0
    def predict(self, path_image):
        img_ = themvien(path_image, (TARGET_SIZE, TARGET_SIZE), 0)
        emb = incpetion_predict(img_)
        lab_img = cv2.cvtColor(img_, cv2.COLOR_BGR2LAB)
        l_channel, a_channel, b_channel = cv2.split(lab_img)
        img_resize = cv2.resize(img_, (RESIZE_SIZE, RESIZE_SIZE))
        img_resize = np.array(img_resize, dtype = float)
        x = rgb2lab(1.0/255*img_resize)[:, :, 0]
        x = x.reshape(1, RESIZE_SIZE, RESIZE_SIZE, 1)
        output = self.model_.predict([x, emb])
        output *= 128

        cur = np.zeros((RESIZE_SIZE, RESIZE_SIZE, 3))
        cur[:, :, 0] = x[0][:, :, 0]
        cur[:, :, 1:] = output[0]
        result_name = str(uuid.uuid4()) + '.png'
        imsave('./static/image/' + result_name, lab2rgb(cur))
        l, a, b = processing('./static/image/' + result_name)
        out = np.zeros((TARGET_SIZE, TARGET_SIZE, 3), dtype = np.uint8)
        out[:, :, 0] = l_channel
        out[:, :, 1] = a
        out[:, :, 2] = b
        out = cv2.cvtColor(out, cv2.COLOR_LAB2BGR)
        cv2.imwrite('./static/image/' + result_name, out)
        return result_name
Example #2
0
def init(files, folder=''):
    data = []
    t_sizes = []

    for file in files:
        _, edges_parameter, lines_parameter = read_params_file(file,
                                                               folder=folder)
        target = imageProcessing.processing(file,
                                            folder=folder,
                                            edges_parameter=edges_parameter,
                                            lines_parameter=lines_parameter)
        data.append((file, target))
        t_sizes.append(target.size)

    return max(t_sizes), data
Example #3
0
    def routine(frame, camera_mks_rm):
        global rel_x_ratio, num_data
        processed_frame, explain1 = processing(frame)

        choosen_left, choosen_right, explain2 = sliding_window(processed_frame)

        ret_left, linear_func_left = get_sliding_window_function(choosen_left)
        ret_right, linear_func_right = get_sliding_window_function(
            choosen_right)

        if ret_left and ret_right:
            steering_angle, explain2 = get_steering_angle_from_linear_function(
                (linear_func_left + linear_func_right) / 2, explain2)
            # left = linear_func_left(480)
            # right = linear_func_right(480)
            # print(left, right, right - left)

            # steering_angle = filter_deg.get_moving_average(steering_angle)
        elif ret_left:
            steering_angle, explain2 = get_steering_angle_from_linear_function(
                linear_func_left, explain2, rel_x_ratio=1.2)
            # steering_angle = filter_deg.get_moving_average(steering_angle)
        elif ret_right:
            steering_angle, explain2 = get_steering_angle_from_linear_function(
                linear_func_right, explain2, rel_x_ratio=0.8)
            # steering_angle = filter_deg.get_moving_average(steering_angle)
        else:
            steering_angle = filter_deg2.prev_lpf
            # steering_angle = filter_deg.prev_avg
        steering_angle = filter_deg2.get_lpf(steering_angle)[0]

        _, explain2 = tfcp.get_segment(explain2, camera_mks_rm,
                                       linear_func_left, linear_func_right)

        # ret_line, _ = tfcp.get_line(explain2, num_data, camera_mks_rm)

        # Merge Explain
        vertical_line = np.zeros((explain1.shape[0], 5, 3), dtype=np.uint8)
        explain_merge = np.hstack((explain2, vertical_line, explain1))

        return steering_angle, explain_merge
Example #4
0
    def routine(frame):
        global rel_x_ratio
        processed_frame, explain1 = processing(frame)

        choosen_left, choosen_right, explain2 = sliding_window(processed_frame)

        ret_left, linear_func_left = get_sliding_window_function(choosen_left)
        ret_right, linear_func_right = get_sliding_window_function(choosen_right)

        if ret_left and ret_right:
            steering_angle, explain2 = get_steering_angle_from_linear_function((linear_func_left + linear_func_right)/2, explain2)
            # left = linear_func_left(480)
            # right = linear_func_right(480)
            # print(left, right, right - left)
            
            ## distance ~= 435.662 PIXEL or 0.845m 
            ## 515.58 PIXEL / m
            ## Offset from lidar to ROI : 0.400 m
            
            # steering_angle = filter_deg.get_moving_average(steering_angle)
        elif ret_left:
            steering_angle, explain2 = get_steering_angle_from_linear_function(linear_func_left, explain2, rel_x_ratio=1.2)
            # steering_angle = filter_deg.get_moving_average(steering_angle)
        elif ret_right:
            steering_angle, explain2 = get_steering_angle_from_linear_function(linear_func_right, explain2, rel_x_ratio=0.8)
            # steering_angle = filter_deg.get_moving_average(steering_angle)
        else:
            steering_angle = filter_deg2.prev_lpf
            # steering_angle = filter_deg.prev_avg
        steering_angle = filter_deg2.get_lpf(steering_angle)[0]

        # Merge Explain
        vertical_line = np.zeros((explain1.shape[0], 5, 3), dtype=np.uint8)
        explain_merge = np.hstack((explain2, vertical_line, explain1))

        return steering_angle, explain_merge
Example #5
0
    def start(self):
        class_name = 'QWidget'
        title_name = '金山打字通 2016'

        self.hwnd = gui.FindWindow(class_name,title_name)
        #print(self.hwnd)
        if self.hwnd:
            #gui.CloseWindow(self.hwnd)
            left, top, right, bottom = self.gui_control()
            if (left<0 or top<0 or right<0 or bottom<0):
                raise Exception("Please don't hide the window!")
            
            left += 45
            top += 155
            right -= 50
            bottom -= 130
            rect = (left, top, right, bottom)
            
            img = ImageGrab.grab().crop(rect)
            '''
            plt.imshow(img)
            plt.show()
            '''
            
            if self.isSave:
                for j in range(5):
                    for i in range(66):
                        img_ready = img.crop((10.4*i,63.8*j,10.4*(i+1),63.8*j+18))
                        plt.imshow(img_ready)
                        plt.xticks([]), plt.yticks([])
                        plt.show()
                        img_ready.save(PICTURE_PATH.format(self.title, j, i))
                        
                        char = input("Please enter the char: ")
                        with open(LABEL_PATH,'a') as f:
                            f.write("./pictures/{}.{}.{}.jpg {}\n".format(self.title, j, i, ord(char)))
                        
            elif self.isGray:
                for j in range(5):
                    for i in range(66):
                        img_croped = img.crop((10.4*i,63.8*j,10.4*(i+1),63.8*j+18))
                        '''
                        plt.imshow(img_croped)
                        plt.xticks([]), plt.yticks([])
                        plt.show()
                        '''
                        img_processed = image_processing.processing(img_croped,False)
                        img_ready = pre_pic.pre_pic(img_processed,isApp=True)
                        if j==0 and i==0:
                            imgs = img_ready
                        else:
                            imgs = np.r_[imgs,img_ready]
                #print(imgs)
                yield self.hwnd,imgs
            else:
                for j in range(5):
                    for i in range(66):
                        img_croped = img.crop((10.4*i,63.8*j,10.4*(i+1),63.8*j+18))
                        '''
                        plt.imshow(img_croped)
                        plt.xticks([]), plt.yticks([])
                        plt.show()
                        '''
                        img_processed = image_processing.processing(img_croped,False)
                        img_ready = pre_pic.pre_pic(img_processed,isApp=True,isGray=False)
                        if j==0 and i==0:
                            imgs = img_ready
                        else:
                            imgs = np.r_[imgs,img_ready]
                #print(imgs)
                yield self.hwnd,imgs
            
        else:
            raise Exception("金山打字通2016 窗口捕获失败!")
Example #6
0
minVal = 15_000 
maxVal = 20_000
aperture_Size = 7
L2_gradient = True

rho = 7
threshold = 2
min_line_length = 2
max_line_gap = 4

# parameters for Target detection
edges_parameter = imageProcessing.edges_parm(minVal, maxVal, aperture_Size, L2_gradient)
lines_parameter = imageProcessing.lines_parm(rho, threshold, min_line_length, max_line_gap)


target = imageProcessing.processing(file, folder, edges_parameter, lines_parameter)
print('IND_SIZE: ' + str(target.size))
print('Height: ' + str(target.height))
print('Width: '+ str(target.width))

viewer.show_individual(target)

viewer.save_image(viewer.draw_individual(target), name='tmp/' + file + '_size_' +str(target.size))

# make params-file for input image
data = []
data.append(file)
data.append('edges_parameter')
data.append('minVal= ' + str(minVal))
data.append('maxVal= ' + str(maxVal))
data.append('aperture_Size= ' + str(aperture_Size))
Example #7
0
    def routine(frame, POS):
        global filter_coef_left, filter_coef_right, heading_deg
        frame = calibrate_image(frame)

        processed_frame, explain1 = processing(frame)

        processed_height, processed_width = processed_frame.shape[:2]
        processed_height2 = processed_height // 3 * 2

        choosen_left, choosen_right, explain2 = sliding_window(processed_frame)

        func_coef_left = get_linear_function(choosen_left)
        func_coef_right = get_linear_function(choosen_right)

        if func_coef_left and func_coef_right:
            for coef in [func_coef_left, func_coef_right]:
                func = np.poly1d(coef)
                new_ys = np.linspace(0,
                                     processed_frame.shape[0],
                                     num=processed_frame.shape[0],
                                     endpoint=True)
                new_xs = func(new_ys)

                for x, y in zip(new_xs, new_ys):
                    if 0 < y < processed_frame.shape[
                            0] and 0 < x < processed_frame.shape[1]:
                        x, y = int(x), int(y)
                        cv.circle(explain2, (x, y), 3, (0, 255, 255), -1)

            for coef in [(func_coef_left + func_coef_right) / 2]:
                func = np.poly1d(coef)
                new_ys = np.linspace(0,
                                     processed_frame.shape[0],
                                     num=processed_frame.shape[0],
                                     endpoint=True)
                new_xs = func(new_ys)

                for x, y in zip(new_xs, new_ys):
                    if 0 < y < processed_frame.shape[
                            0] and 0 < x < processed_frame.shape[1]:
                        x, y = int(x), int(y)
                        cv.circle(explain2, (x, y), 3, (0, 0, 255), -1)

            heading_src = (processed_width // 2, processed_height)
            heading_dst = (func(processed_height2), processed_height2)
            heading_sub = (heading_src[0] - heading_dst[0],
                           heading_src[1] - heading_dst[1])

            heading_rad = np.arctan2(heading_sub[1], heading_sub[0])
            heading_deg = np.degrees(heading_rad)

            # heading_deg = filter_deg.LPF(np.array([heading_deg]))[0]
            heading_deg = filter_deg2.get_lpf(heading_deg)
            steering_deg = heading_deg - 90

            heading_rad = np.radians(heading_deg)

            gradient = np.tan(heading_rad)

            heading_dst = ((processed_height2 - processed_height) / gradient +
                           processed_width // 2, processed_height2)

            heading_src = tuple(rint(heading_src))
            heading_dst = tuple(rint(heading_dst))

            cv.circle(explain2, heading_src, 3, (0, 0, 255), -1)
            cv.circle(explain2, heading_dst, 3, (0, 0, 255), -1)
            cv.line(explain2, heading_src, heading_dst, (0, 0, 255), 1)

        else:
            # heading_rad = np.radians(heading_deg)
            # gradient = np.tan(heading_rad) + 1e-10

            # heading_src = (processed_width//2, processed_height)
            # heading_dst = ((processed_height2 - heading_src[1])/gradient + heading_src[0], processed_height2)

            # heading_src = tuple(rint(heading_src))
            # heading_dst = tuple(rint(heading_dst))

            # cv.circle(explain2, heading_src, 3, (0, 0, 255), -1)
            # cv.circle(explain2, heading_dst, 3, (0, 0, 255), -1)
            # cv.line(explain2, heading_src, heading_dst, (0, 0, 255), 1)

            if func_coef_left:
                func = np.poly1d(func_coef_left)
                new_ys = np.linspace(0,
                                     processed_frame.shape[0],
                                     num=processed_frame.shape[0],
                                     endpoint=True)
                new_xs = func(new_ys)

                left_src = (func(processed_height), processed_height)
                left_dst = (func(processed_height2), processed_height2)
                left_sub = (left_src[0] - left_dst[0],
                            left_src[1] - left_dst[1])

                left_rad = np.arctan2(left_sub[1], left_sub[0])
                heading_deg = np.degrees(left_rad)

                heading_deg = filter_deg2.get_lpf(heading_deg)
                steering_deg = heading_deg - 90

                heading_rad = np.radians(heading_deg)

                gradient = np.tan(heading_rad) + 1e-10
                heading_src = (processed_width // 2, processed_height)
                heading_dst = (
                    (processed_height2 - processed_height) / gradient +
                    processed_width // 2, processed_height2)

                heading_src = tuple(rint(heading_src))
                heading_dst = tuple(rint(heading_dst))

                cv.circle(explain2, heading_src, 3, (0, 0, 255), -1)
                cv.circle(explain2, heading_dst, 3, (0, 0, 255), -1)
                cv.line(explain2, heading_src, heading_dst, (0, 0, 255), 1)

            elif func_coef_right:
                func = np.poly1d(func_coef_right)
                new_ys = np.linspace(0,
                                     processed_frame.shape[0],
                                     num=processed_frame.shape[0],
                                     endpoint=True)
                new_xs = func(new_ys)

                right_src = (func(processed_height), processed_height)
                right_dst = (func(processed_height2), processed_height2)
                right_sub = (right_src[0] - right_dst[0],
                             right_src[1] - right_dst[1])

                right_rad = np.arctan2(right_sub[1], right_sub[0])
                heading_deg = np.degrees(right_rad)

                heading_deg = filter_deg2.get_lpf(heading_deg)
                steering_deg = heading_deg - 90

                heading_rad = np.radians(heading_deg)

                gradient = np.tan(heading_rad) + 1e-10

                heading_src = (processed_width // 2, processed_height)
                heading_dst = (
                    (processed_height2 - processed_height) / gradient +
                    processed_width // 2, processed_height2)

                heading_src = tuple(rint(heading_src))
                heading_dst = tuple(rint(heading_dst))

                cv.circle(explain2, heading_src, 3, (0, 0, 255), -1)
                cv.circle(explain2, heading_dst, 3, (0, 0, 255), -1)
                cv.line(explain2, heading_src, heading_dst, (0, 0, 255), 1)
            else:
                new_ys = []
                new_xs = []

            for x, y in zip(new_xs, new_ys):
                if 0 < y < processed_frame.shape[
                        0] and 0 < x < processed_frame.shape[1]:
                    x, y = int(x), int(y)
                    cv.circle(explain2, (x, y), 3, (255, 255, 0), -1)

        print(heading_deg)
        # Merge Explain
        vertical_line = np.zeros((explain1.shape[0], 5, 3), dtype=np.uint8)
        explain_merge = np.hstack((explain2, vertical_line, explain1))
        cv.putText(explain_merge, "POS: {}".format(int(POS)), (0, 40),
                   cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

        return explain_merge
Example #8
0
    image = image.reshape(784, )
    image = np.expand_dims(
        image, axis=0)  # p转换成了2维,模型第一层定义了输入格式为2维: input_shape=(784,)

    # 测试图片
    pre = model1.predict(image)
    return np.argmax(pre, axis=1)[0]


def recognition2(image):
    """
	使用模型2识别
	:param image: 待识别图片
	:return: 识别结果
	"""
    # 转化为列表的array格式
    image_list = []
    image = get_feature(image)
    image_list.append(image)
    image_array = np.array(image_list)

    # 测试图片
    pre = model2.predict(image_array)
    return np.argmax(pre, axis=1)[0]


if __name__ == '__main__':
    p, o_image = processing("./image/1.png")
    recognition1(o_image)
    recognition2(o_image)