def _flow_on_training(self): # get minibatch indices with self.lock: index_array, current_index, current_batch_size = next( self.index_generator) image_batch = np.array(self.x[index_array]) image_batch = normalize(image_batch, self.normalize_mode) # label_batch = np.array(self.y[index_array]) return image_batch
def preprocessing(x, target_size=None): image = x.convert('L') if target_size is not None and target_size != image.size: image = image.resize(target_size, Image.BILINEAR) image_array = np.asarray(image) image_array = normalize(image_array) return image_array
def load_image(path, channel=None): """ :param paths: (channel, ) string list :param target_size: :return: """ image_array = np.asarray(Image.open(path)) image_array = normalize(image_array) split_array = np.array(np.split(image_array, channel, axis=1)) image_array = split_array.transpose((1, 2, 0)) return image_array
def _flow_on_test(self): # create indices indexes = np.arange(self.n) # calculate steps per a test steps = self.n // self.batch_size if self.n % self.batch_size != 0: steps += 1 # yield loop for i in range(steps): index_array = indexes[i * self.batch_size:(i + 1) * self.batch_size] image_batch = self.x[index_array] image_batch = normalize(image_batch, self.normalize_mode) # label_batch = self.y[index_array] yield image_batch