def make_project_file(name, k, session): import image_segment import file_handling img = file_handling.get_target_image(name) labels = image_segment.segment(img, k) target_image = TargetImage(name=name, pixels=img, labels=labels) session.merge(target_image) session.commit() return target_image
def search_exhaustively(): img = ndimage.imread('butterfly.jpg') img = misc.imresize(img, size=0.125) env = ndimage.imread('box-turtle.jpeg') env = misc.imresize(env, size=1.0) search_env = env patch_src = img K = 50 labels = image_segment.segment(img, K) patch_indices = labels == 15 searcher = RlSearch(search_env, patch_src, patch_indices) searcher.search_exhaustively()
def search_smartly(): img = ndimage.imread('butterfly.jpg') img = misc.imresize(img, size=0.0625) env = ndimage.imread('box-turtle.jpeg') env = misc.imresize(env, size=0.25) search_env = img patch_src = img K = 50 labels = image_segment.segment(img, K) patch_indices = labels == 15 searcher = RlSearch(search_env, patch_src, patch_indices) searcher.run(N_Terminator(200)) print searcher.Q print searcher.state searcher.display()
from matplotlib import pyplot as plt import matplotlib.patches as mpatch import numpy as np if __name__ == "__main__": img = ndimage.imread('butterfly.jpg') img = misc.imresize(img, size = 0.0625) search_env = img patch_src = img K = 50 labels = image_segment.segment(img, K) label = 40 x_ndx, y_ndx = np.where(labels == label) bbox = np.min(x_ndx), np.max(x_ndx), np.min(y_ndx), np.max(y_ndx) modded = np.copy(img) modded[labels != label] = [0,0,0] weights = modded[bbox[0] : bbox[1] , bbox[2] : bbox[3]] / 255. output = ndimage.filters.convolve(img / 255., weights, mode='constant',cval=0.0) fig1 = plt.figure(figsize=(5, 5)) ax1 = fig1.add_subplot(211) output = np.dot(output[...,:3], [0.299, 0.587, 0.114]) # greyscale ax1.imshow(output, alpha = 1.0)