Example #1
0
def plot_fits(pars, samples, dolog=True, show=False, eps=None, par_labels=None):
    """
    """
    import esutil as eu
    import biggles
    import images

    biggles.configure('screen','width', 1400)
    biggles.configure('screen','height', 800)

    num=pars.shape[0]
    ndim=pars.shape[1]

    if par_labels[0]=='fracdev':
        nrow=1
        ncol=2
        tab=biggles.Table(nrow,ncol)
        plin = _plot_single(pars[:,0], samples[:,0], do_ylog=False)
        plog = _plot_single(pars[:,0], samples[:,0], do_ylog=True)
        plin.xlabel='fracdev'
        plog.xlabel='fracdev'
        tab[0,0]=plin
        tab[0,1]=plog
    else:
        nrow,ncol = images.get_grid(ndim) 
        tab=biggles.Table(nrow,ncol)


        for dim in xrange(ndim):
            plt = _plot_single(pars[:,dim], samples[:,dim],do_ylog=True)
            if par_labels is not None:
                plt.xlabel=par_labels[dim]
            else:
                plt.xlabel=r'$P_%s$' % dim

            row=(dim)/ncol
            col=(dim) % ncol

            tab[row,col] = plt

    tab.aspect_ratio=nrow/float(ncol)

    if eps:
        import converter
        print(eps)
        d=os.path.dirname(eps)
        if not os.path.exists(d):
            os.makedirs(d)
        tab.write_eps(eps)
        converter.convert(eps, verbose=True, dpi=200)

    if show:
        tab.show()
Example #2
0
def plot_fits(pars, samples, comps, dolog=True, show=False, eps=None, par_labels=None):
    """
    """
    import esutil as eu
    import biggles
    import images

    biggles.configure('screen','width', 1400)
    biggles.configure('screen','height', 800)

    num=pars.shape[0]
    ndim=pars.shape[1]

    nrow,ncol = images.get_grid(ndim) 
    tab=biggles.Table(nrow,ncol)


    for dim in xrange(ndim):
        plt = _plot_single(pars[:,dim], samples[:,dim], comps, do_ylog=True)
        if par_labels is not None:
            plt.xlabel=par_labels[dim]
        else:
            plt.xlabel=r'$P_%s$' % dim

        row=(dim)/ncol
        col=(dim) % ncol

        tab[row,col] = plt

    tab.aspect_ratio=nrow/float(ncol)

    if eps:
        import converter
        print(eps)
        d=os.path.dirname(eps)
        if not os.path.exists(d):
            os.makedirs(d)
        tab.write_eps(eps)
        converter.convert(eps, verbose=True, dpi=200)

    if show:
        tab.show()
Example #3
0
def plot_results_separate(trials, **keys):
    """
    Plot the points and histograms of trials from an MCMC chain.
    """
    import biggles
    import esutil
    import images

    npars = trials.shape[1]

    fontsize_min = keys.get("fontsize_min", 1)
    biggles.configure("default", "fontsize_min", fontsize_min)
    weights = keys.get("weights", None)

    binfac = keys.get("binfac", 0.2)
    names = keys.get("names", None)
    show = keys.get("show", True)
    ptypes = keys.get("ptypes", ["linear"] * npars)

    means, cov = extract_stats(trials, weights=weights)
    errs = sqrt(diag(cov))

    nrows, ncols = images.get_grid(npars)
    burn_plt = biggles.Table(nrows, ncols)
    hist_plt = biggles.Table(nrows, ncols)

    ind = numpy.arange(trials.shape[0])

    prow = 0
    pcol = 0
    for i in xrange(npars):

        prow = i / ncols
        pcol = i % ncols

        if names is not None:
            name = names[i]
        else:
            name = r"$p_{%d}$" % i

        lab = r"$<%s> = %0.4g \pm %0.4g$" % (name, means[i], errs[i])
        plab = biggles.PlotLabel(0.1, 0.8, lab, halign="left", color="blue")

        # steps
        burn_plot_i = esutil.plotting.bscatter(ind, trials[:, i], type="solid", xlabel="step", ylabel=name, show=False)

        burn_plot_i.add(plab)
        burn_plt[prow, pcol] = burn_plot_i

        # hist
        vals = trials[:, i]
        bsize = binfac * errs[i]

        hdict = esutil.stat.histogram(vals, binsize=bsize, weights=weights, more=True)
        if weights is not None:
            hist = hdict["whist"]
            hplot = biggles.Curve(hdict["center"], hdict["whist"])
        else:
            hist = hdict["hist"]
            hplot = biggles.Histogram(hdict["hist"], x0=hdict["low"][0], binsize=bsize)
        plti = biggles.FramedPlot()

        plti.xlabel = name

        hmax = hist.max()
        plti.yrange = [-0.05 * hmax, 1.2 * hmax]

        plti.add(hplot)
        plti.add(plab)

        hist_plt[prow, pcol] = plti

    burn_plt.title = keys.get("title", None)
    hist_plt.title = keys.get("title", None)

    if show:
        burn_plt.show()
        hist_plt.show()

    return burn_plt, hist_plt
Example #4
0
def plot_results_separate(trials, **keys):
    """
    Plot the points and histograms of trials from an MCMC chain.
    """
    import biggles
    import esutil
    import images

    npars=trials.shape[1]

    fontsize_min=keys.get('fontsize_min',1)
    biggles.configure( 'default', 'fontsize_min', fontsize_min)
    weights=keys.get('weights',None)

    binfac=keys.get('binfac',0.2)
    names=keys.get('names',None)
    show=keys.get('show',True)
    ptypes=keys.get('ptypes',['linear']*npars)

    means,cov = extract_stats(trials,weights=weights)
    errs=sqrt(diag(cov)) 

    nrows, ncols =images.get_grid(npars)
    burn_plt=biggles.Table(nrows, ncols)
    hist_plt=biggles.Table(nrows, ncols)

    ind = numpy.arange(trials.shape[0])

    prow=0
    pcol=0
    for i in xrange(npars):

        prow=i/ncols
        pcol=i % ncols

        if names is not None:
            name=names[i]
        else:
            name=r'$p_{%d}$' % i

        lab = r'$<%s> = %0.4g \pm %0.4g$' % (name,means[i],errs[i])
        plab = biggles.PlotLabel(0.1,0.8,lab,
                                 halign='left',
                                 color='blue')

        # steps
        burn_plot_i = esutil.plotting.bscatter(ind,trials[:,i],
                                               type='solid',
                                               xlabel='step',
                                               ylabel=name,
                                               show=False)

        burn_plot_i.add(plab)
        burn_plt[prow,pcol] = burn_plot_i

        # hist
        vals=trials[:,i]
        bsize = binfac*errs[i]

        hdict = esutil.stat.histogram(vals,
                                      binsize=bsize, 
                                      weights=weights,
                                      more=True)
        if weights is not None:
            hist=hdict['whist']
            hplot = biggles.Curve(hdict['center'],
                                  hdict['whist'])
        else:
            hist=hdict['hist']
            hplot = biggles.Histogram(hdict['hist'], 
                                      x0=hdict['low'][0], 
                                      binsize=bsize)
        plti=biggles.FramedPlot()

        plti.xlabel=name

        hmax=hist.max()
        plti.yrange=[-0.05*hmax, 1.2*hmax]

        plti.add(hplot)
        plti.add(plab)

        hist_plt[prow,pcol]=plti
   
    burn_plt.title=keys.get('title',None)
    hist_plt.title=keys.get('title',None)

    if show:
        burn_plt.show()
        hist_plt.show()

    return burn_plt, hist_plt