def calc_star_stats(): util.mkdir(stats_dir) for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Catalog: ', img) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] stats_file = stats_dir + 'stats_' + key + '.fits' redu.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file, flux_percent=0.2) # stats1 = table.Table.read(stats_file) # redu.add_frame_number_column(stats1) # stats1.write(stats_file, overwrite=True) # stats_file_mdp = stats_file.replace('.fits', '_mdp.fits') # stats2 = table.Table.read(stats_file_mdp) # redu.add_frame_number_column(stats1) # stats2.write(stats_file_mdp, overwrite=True) return
def calc_star_stats(): util.mkdir(stats_dir) ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup #for key in ['open_IVBR', 'LS_IVBR', 'docz_IVBR']: #for key in []: for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Catalog: ', img) img_files = [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] stats_file = stats_dir + 'stats_' + key + '.fits' redu.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file, flux_percent=0.2) ## DEBUG - single threaded #key_i = 'open_BRIV' #fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' #image_file = fmt.format(dir=out_dir, img=dict_images[key_i][0], suf=dict_suffix[key_i]) #stats_file = f'{stats_dir}stats_{key_i}.fits' #redu.calc_star_stats([image_file], output_stats=stats_file) #moffat.fit_moffat_single(image_file,image_file.replace('.fits', '_stars_stats.fits'), 0.2) return
def analyze_4F_stacks(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] all_starlists = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] odr = dict_filt[key] if odr != 'I': all_images += [ stacks_dir + f'fld2_stack_{suf}_{odr}.fits' for f in filters ] all_starlists += [ stacks_dir + f'4F/fld2_stack_{suf}_{odr}_{f}_{odr}_stars.txt' for f in filters ] # unfortunate naming error stats_file = stats_dir + 'stats_stacks.fits' starlist_stats = [ strlst.replace('_stars.txt', '_stars_stats.fits') for strlst in all_starlists ] ## Calc stats on all the stacked images #redu.calc_star_stats(all_images, output_stats=stats_file, starlists=all_starlists, fourfilt=True) print("Starting moffat fitting") moffat.fit_moffat(all_images, stats_file, starlists=starlist_stats, flux_percent=0.2) return
def analyze_stacks(): # Loop through all the different data sets and reduce them. all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] fwhm = dict_fwhm[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) image_file = [stacks_dir + 'beehive_stack_' + suf + '.fits'] all_images.append(image_file[0]) reduce_fli.find_stars(image_file, fwhm=fwhm, threshold=3, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'mask.fits') # Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' reduce_fli.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) # DEBUG - single threaded # image_file = stacks_dir + 'beehive_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def calc_star_stats(): util.mkdir(stats_dir) ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Catalog: ', img) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] stats_file = stats_dir + 'stats_' + key + '.fits' redu.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file, flux_percent=0.2) ## DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # stats_file = stats_dir + 'stats_LS_c.fits' # redu.calc_star_stats(image_file, stats_file, flux_percent=0.2) return
def calc_fourfilt_stats(): # Getting unique suffixes (loop states): suffixes = list(set(dict_suffix_rot.values())) # Grouping by suffixes for suf in suffixes: # keys with given suffix keys = [key for key in dict_suffix_rot.keys() if dict_suffix_rot[key] == suf] # Iterating through filters for f in filters: stats_file = stats_dir + f'stats_{suf}_{f}.fits' img_files = [] starlists = [] for key in keys: img = dict_images_rot[key] odr = dict_orders_rot[key] img_files += [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] starlists += [out_dir + 'sta{img:03d}{suf:s}_scan_clean_{f:s}_{odr:s}_stars.txt'.format(img=ii, suf=suf, f=f, odr=odr) for ii in img] reduce_fli.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) print("Starting moffat fitting") moffat.fit_moffat(img_files, stats_file, starlists=starlists) ## SINGLE THREAD # reduce_fli.calc_star_stats_single(img_files[0], starlists[0], True) return
def calc_4F_stats(): # Getting unique suffixes (loop states): suffixes = list(set(dict_suffix_rot.values())) # Grouping by suffixes for suf in suffixes: # keys with given suffix keys = [key for key in dict_suffix_rot.keys() if dict_suffix_rot[key] == suf] # Iterating through filters for f in filters: stats_file = stats_dir + f'stats_{suf}_{f}.fits' img_files = [] starlists = [] for key in keys: img = dict_images_rot[key] odr = dict_orders_rot[key] img_files += [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] starlists += [out_dir + '4F/sta{img:03d}{suf:s}_scan_clean_{f:s}_{odr:s}_stars.txt'.format(img=ii, suf=suf, f=f, odr=odr) for ii in img] starlist_stats = [strlst.replace('_stars.txt', '_stars_stats.fits') for strlst in starlists] print(f"Calc Star_Stats: {suf} \n Filter: {f}") redu.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) print("Starting moffat fitting") moffat.fit_moffat(img_files, stats_file, starlists=starlist_stats) ## DEBBUG: SINGLE THREAD #print("stars: ", starlists[0]) #print("stats: ", stats_file) #redu.calc_star_stats_single(img_files[0], starlists[0], True) #moffat.fit_moffat_single(img_files[0], starlist_stats[0], 0.2) #break #break return
def analyze_stacks(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] # o/c loop distinction fwhm = 15 if re.search('open', key) else 8 thrsh = 5 if re.search('open', key) else 6 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) print(' thrsh: ', str(thrsh)) image_file = [stacks_dir + 'beehive_stack_' + suf + '.fits'] all_images.append(image_file[0]) redu.find_stars(image_file, fwhm=fwhm, threshold=thrsh, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + 'domemask.fits') ## Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' redu.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) ## DEBUG - single threaded # image_file = stacks_dir + 'fld2_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def calc_star_stats(): util.mkdir(stats_dir) ## Loop through all datasets for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] bin = 'bin1' if 'bin1' in key else 'bin2' # key should contain bin info print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Catalog: ', img) img_files = [ out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img ] stats_file = stats_dir + 'stats_' + key + '.fits' redu.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file, flux_percent=0.2) # DEBUG - single threaded # fmt = '{dir}sta{img:03d}{suf:s}_scan_clean.fits' # image_file = fmt.format(dir=out_dir, img=dict_images['LS_c'][0], suf=dict_suffix['LS_c'][0]) # stats_file = stats_dir + 'stats_LS_c.fits' # redu.calc_star_stats(image_file, stats_file, flux_percent=0.2) return
def calc_mof_stats(): # Open Loop stats_file = stats_dir + 'stats_open.fits' img_files = [ out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 3S stats_file = stats_dir + 'stats_closed_threeWFS_LS.fits' img_files = [ out_dir + 'obj{0:04d}_threeWFS_LS_clean.fits'.format(ii) for ii in fnum_threeWFS_LS ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 3L stats_file = stats_dir + 'stats_closed_threeWFSLS_B2_c.fits' img_files = [ out_dir + 'obj{0:04d}_threeWFSLS_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSLS_B2_c ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 4 stats_file = stats_dir + 'stats_closed_threeWFSMean_B2_c.fits' img_files = [ out_dir + 'obj{0:04d}_threeWFSMean_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSMean_B2_c ] moffat.fit_moffat(img_files, stats_file) return
def calc_mof_stats(): # Open Loop stats_file = stats_dir + 'stats_open.fits' img_files = [ out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o_30 + fnum_o_60 ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 3S stats_file = stats_dir + 'stats_closed_3WFS_S.fits' img_files = [ out_dir + 'obj{0:04d}_threewfs_small_c_clean.fits'.format(ii) for ii in fnum_c_3S_30 + fnum_c_3S_60 ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 3L stats_file = stats_dir + 'stats_closed_3WFS_L.fits' img_files = [ out_dir + 'obj{0:04d}_threeWFS_big_c_clean.fits'.format(ii) for ii in fnum_c_3L_30 + fnum_c_3L_60 ] moffat.fit_moffat(img_files, stats_file) # Closed Loop - 4 stats_file = stats_dir + 'stats_closed_4WFS.fits' img_files = [ out_dir + 'obj{0:04d}_fourWFS_c_clean.fits'.format(ii) for ii in fnum_c_4_30 + fnum_c_4_60 ] moffat.fit_moffat(img_files, stats_file) return
def calc_mof_stats(): # Open Loop stats_file = stats_dir + 'stats_open.fits' img_files = [ data_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o ] moffat.fit_moffat(img_files, stats_file) # Closed Loop stats_file = stats_dir + 'stats_closed.fits' img_files = [ data_dir + 'obj{0:04d}_c_clean.fits'.format(ii) for ii in fnum_c ] moffat.fit_moffat(img_files, stats_file)
def calc_moffat(): reduce_dir = root_dir + 'reduce/pleiades/' stats_dir = root_dir + 'reduce/stats/' #open loop fnum = np.arange(57, 67) img_files = [reduce_dir + 'obj{0:03d}_clean.fits'.format(ii) for ii in fnum] moffat.fit_moffat(img_files, stats_dir + 'stats_open_mdp_alt.fits', x_guess=6, y_guess=8, flux_percent=0.5) #closed loop fnum = np.arange(47, 57) img_files = [reduce_dir + 'obj{0:03d}_clean.fits'.format(ii) for ii in fnum] moffat.fit_moffat(img_files, stats_dir + 'stats_closed_mdp_alt.fits', x_guess=3.3, y_guess=3.3, flux_percent=0.5) return
def calc_star_stats(): util.mkdir(stats_dir) for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Catalog: ', img) img_files = [out_dir + 'sta{img:03d}{suf:s}_scan_clean.fits'.format(img=ii, suf=suf) for ii in img] stats_file = stats_dir + 'stats_' + key + '.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file, flux_percent=0.2) return
def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] stats_file = stats_dir + 'stats_open.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - B2 img_files = [ out_dir + 'obj{0:03d}LS4WFS_B2_c_scan_clean.fits'.format(ii) for ii in fnum_c_B2 ] stats_file = stats_dir + 'stats_closed_B2.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - 4W img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4W ] stats_file = stats_dir + 'stats_closed_4W.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - n1 img_files = [ out_dir + 'obj{0:03d}LS4WFS_zc11_c_scan_clean.fits'.format(ii) for ii in fnum_c_zc ] stats_file = stats_dir + 'stats_closed_zc.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #tip tilt img_files = [out_dir + 'obj{0:03d}tip_tilt_scan_clean.fits'.format(ii)\ for ii in fnum_tt] stats_file = stats_dir + 'stats_closed_tt.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) return
def analyze_stacks(): ## EDITED FOR 4F DATA ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] for key in dict_suffix.keys(): img = dict_images[key] suf = dict_suffix[key] fwhm = dict_fwhm[key] filt = dict_filt[key] thrsh = 10 peak_max = 30000 sharp_lim = 0.9 print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) image_file = [stacks_dir + 'fld2_stack_' + suf + '_' + filt + '.fits' ] ## EDITED LINE all_images.append(image_file[0]) #redu.find_stars(image_file, fwhm=fwhm, threshold=6, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + f'mask_{filt}.fits') redu.find_stars(image_file, fwhm=fwhm, threshold=thrsh, N_passes=2, plot_psf_compare=False, mask_file=calib_dir + f'mask_{filt}.fits', peak_max=peak_max, sharp_lim=sharp_lim) ## Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' redu.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) ## DEBUG - single threaded # image_file = stacks_dir + 'fld2_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] stats_file = stats_dir + 'stats_open.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFS_LS img_files = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean.fits'.format(ii) for ii in fnum_c ] stats_file = stats_dir + 'stats_closed_threeWFS_LS_c.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) return
def analyze_stacks(): ## Loop through all the different data sets #for key in ['set_name']: ## Single key setup all_images = [] #for key in dict_suffix.keys(): for key in ['LS_3wfs_r2', 'LS_5wfs_r2', 'open_r2']: img = dict_images[key] suf = dict_suffix[key] fwhm = dict_fwhm[key] thrsh = 10 peak_max = 30000 sharp_lim = dict_sharp[key] print('Working on: {1:s} {0:s}'.format(key, suf)) print(' Images: ', img) print(' Fwhm: ', str(fwhm)) print(' Thresh: ', str(thrsh)) image_file = [stacks_dir + 'beehive_stack_' + suf + '.fits'] all_images.append(image_file[0]) redu.find_stars(image_file, fwhm=fwhm, threshold=thrsh, plot_psf_compare=False, mask_file=calib_dir + 'domemask.fits', peak_max=peak_max, sharp_lim=sharp_lim) ## Calc stats on all the stacked images out_stats_file = stats_dir + 'stats_stacks.fits' redu.calc_star_stats(all_images, output_stats=out_stats_file) moffat.fit_moffat(all_images, out_stats_file, flux_percent=0.2) ## DEBUG - single threaded # image_file = stacks_dir + 'fld2_stack_' + dict_suffix['open'] + '.fits' # redu.find_stars_single(image_file, dict_fwhm['open'], 3, 2, False, calib_dir + 'mask.fits') return
def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] stats_file = stats_dir + 'stats_open.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - B2 img_files = [ out_dir + 'obj{0:03d}LS_B2_c_scan_clean.fits'.format(ii) for ii in fnum_c_B2 ] stats_file = stats_dir + 'stats_closed_B2.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - n7 img_files = [ out_dir + 'obj{0:03d}LSnrej7_zc21_c_scan_clean.fits'.format(ii) for ii in fnum_c_n7 ] stats_file = stats_dir + 'stats_closed_n7.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - n1 img_files = [ out_dir + 'obj{0:03d}LSnrej1_zc21_c_scan_clean.fits'.format(ii) for ii in fnum_c_n1 ] stats_file = stats_dir + 'stats_closed_n1.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) return
def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o] stats_file = stats_dir + 'stats_open.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFS_LS img_files = [out_dir + 'obj{0:04d}_threeWFS_LS_clean.fits'.format(ii) for ii in fnum_threeWFS_LS] stats_file = stats_dir + 'stats_closed_threeWFS_LS.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFSLS_B2_c img_files = [out_dir + 'obj{0:04d}_threeWFSLS_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSLS_B2_c] stats_file = stats_dir + 'stats_closed_threeWFSLS_B2_c.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFSMean_B2_c img_files = [out_dir + 'obj{0:04d}_threeWFSMean_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSMean_B2_c] stats_file = stats_dir + 'stats_closed_threeWFSMean_B2_c.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # Open Loop - 2 filter img_files = [out_dir + 'obj{0:04d}_o_clean.fits'.format(ii) for ii in fnum_o_2filt] stats_file = stats_dir + 'stats_open_2filt.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFS_LS - 2 filter img_files = [out_dir + 'obj{0:04d}_threeWFS_LS_clean.fits'.format(ii) for ii in fnum_threeWFS_LS_2filt] stats_file = stats_dir + 'stats_closed_threeWFS_LS_2filt.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFSLS_B2_c - 2 filter img_files = [out_dir + 'obj{0:04d}_threeWFSLS_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSLS_B2_c_2filt] stats_file = stats_dir + 'stats_closed_threeWFSLS_B2_c_2filt.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - threeWFSMean_B2_c - 2 filter img_files = [out_dir + 'obj{0:04d}_threeWFSMean_B2_c_clean.fits'.format(ii) for ii in fnum_threeWFSMean_B2_c_2filt] stats_file = stats_dir + 'stats_closed_threeWFSMean_B2_c_2filt.fits' reduce_fli.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) return
def calc_star_stats_fourfilt(): util.mkdir(stats_dir) # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] # R stats_file = stats_dir + 'stats_open_R.fits' starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_R_stars.txt'.format(ii) for ii in fnum_o ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='R') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # V stats_file = stats_dir + 'stats_open_V.fits' starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_V_stars.txt'.format(ii) for ii in fnum_o ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='V') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # B stats_file = stats_dir + 'stats_open_B.fits' starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_B_stars.txt'.format(ii) for ii in fnum_o ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='B') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # I stats_file = stats_dir + 'stats_open_I.fits' starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_I_stars.txt'.format(ii) for ii in fnum_o ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='I') moffat.fit_moffat(img_files, stats_file, starlists=starlists) #Closed Loop - threeWFS_LS img_files = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean.fits'.format(ii) for ii in fnum_c ] # R stats_file = stats_dir + 'stats_closed_R.fits' starlists = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean_R_stars.txt'.format(ii) for ii in fnum_c ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='R') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # V stats_file = stats_dir + 'stats_closed_V.fits' starlists = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean_V_stars.txt'.format(ii) for ii in fnum_c ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='V') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # B stats_file = stats_dir + 'stats_closed_B.fits' starlists = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean_B_stars.txt'.format(ii) for ii in fnum_c ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='B') moffat.fit_moffat(img_files, stats_file, starlists=starlists) # I stats_file = stats_dir + 'stats_closed_I.fits' starlists = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean_I_stars.txt'.format(ii) for ii in fnum_c ] reduce_STA.calc_star_stats(img_files, output_stats=stats_file, filt='I') moffat.fit_moffat(img_files, stats_file, starlists=starlists) return
reduce_fli.find_stars(img_files, fwhm=7, threshold=15, N_passes=2, plot_psf_compare=False, \ mask_flat=flat_dir+"flat.fits", mask_min=0.8, mask_max=1.4, \ left_slice =20, right_slice=20, top_slice=25, bottom_slice=25) return def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o] stats_file = stats_dir + 'stats_open.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - 4W <<<<<<< HEAD img_files = [out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4W] ======= <<<<<<< HEAD img_files = [out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4W] ======= img_files = [out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in fnum_c_4@] >>>>>>> 9d0fe2dfc407d195227cb24b248c5a5cff886914 >>>>>>> 89ee2c675e89b7f849298b2cbbd5d3a37068a09f stats_file = stats_dir + 'stats_closed_4W.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) #Closed Loop - B2 img_files = [out_dir + 'obj{0:03d}LS4WFS_B2_c_scan_clean.fits'.format(ii) for ii in fnum_c_B2]
def calc_fourfilt_stats(): # Open Loop - B img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in rot_o_4 ] starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_B_BVIR_stars.txt'.format(ii) for ii in rot_1_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_B_VIRB_stars.txt'.format(ii) for ii in rot_2_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_B_IRBV_stars.txt'.format(ii) for ii in rot_3_o ] stats_file = stats_dir + 'stats_open_B.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Open Loop - V img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in rot_o_4 ] starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_V_BVIR_stars.txt'.format(ii) for ii in rot_1_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_V_VIRB_stars.txt'.format(ii) for ii in rot_2_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_V_IRBV_stars.txt'.format(ii) for ii in rot_3_o ] stats_file = stats_dir + 'stats_open_V.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Open Loop - R img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in rot_o_4 ] starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_R_BVIR_stars.txt'.format(ii) for ii in rot_1_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_R_VIRB_stars.txt'.format(ii) for ii in rot_2_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_R_IRBV_stars.txt'.format(ii) for ii in rot_3_o ] stats_file = stats_dir + 'stats_open_R.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Open Loop - I img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in rot_o_4 ] starlists = [ out_dir + 'obj{0:03d}_o_scan_clean_I_BVIR_stars.txt'.format(ii) for ii in rot_1_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_I_VIRB_stars.txt'.format(ii) for ii in rot_2_o ] starlists += [ out_dir + 'obj{0:03d}_o_scan_clean_I_IRBV_stars.txt'.format(ii) for ii in rot_3_o ] stats_file = stats_dir + 'stats_open_I.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Closed Loop - B img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in rot_c_4 ] starlists = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_B_BVIR_stars.txt'.format(ii) for ii in rot_1_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_B_VIRB_stars.txt'.format(ii) for ii in rot_2_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_B_IRBV_stars.txt'.format(ii) for ii in rot_3_c ] stats_file = stats_dir + 'stats_closed_B.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Closed Loop - V img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in rot_c_4 ] starlists = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_V_BVIR_stars.txt'.format(ii) for ii in rot_1_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_V_VIRB_stars.txt'.format(ii) for ii in rot_2_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_V_IRBV_stars.txt'.format(ii) for ii in rot_3_c ] stats_file = stats_dir + 'stats_closed_V.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Closed Loop - R img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in rot_c_4 ] starlists = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_R_BVIR_stars.txt'.format(ii) for ii in rot_1_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_R_VIRB_stars.txt'.format(ii) for ii in rot_2_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_R_IRBV_stars.txt'.format(ii) for ii in rot_3_c ] stats_file = stats_dir + 'stats_closed_R.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) # Closed Loop - I img_files = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean.fits'.format(ii) for ii in rot_c_4 ] starlists = [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_I_BVIR_stars.txt'.format(ii) for ii in rot_1_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_I_VIRB_stars.txt'.format(ii) for ii in rot_2_c ] starlists += [ out_dir + 'obj{0:03d}LS4WFS_c_scan_clean_I_IRBV_stars.txt'.format(ii) for ii in rot_3_c ] stats_file = stats_dir + 'stats_closed_I.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file, starlists=starlists, fourfilt=True) moffat.fit_moffat(img_files, stats_file, starlists=starlists) return
def calc_star_stats(): util.mkdir(stats_dir) # Open Loop img_files = [ out_dir + 'obj{0:03d}_o_scan_clean.fits'.format(ii) for ii in fnum_o ] stats_file = stats_dir + 'stats_open.fits' #reduce_STA.calc_star_stats(img_files, output_stats=stats_file) #moffat.fit_moffat(img_files, stats_file) # EXPERIMENT 1: # Closed - LS_c img_files = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean.fits'.format(ii) for ii in fnum_LS_c ] stats_file = stats_dir + 'stats_closed_LS.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # Closed - LS_B2_c img_files = [ out_dir + 'obj{0:03d}threeWFSLS_B2_c_scan_clean.fits'.format(ii) for ii in fnum_LS_B2_c ] stats_file = stats_dir + 'stats_closed_LS_B2.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # Closed - Mean_B2_c img_files = [ out_dir + 'obj{0:03d}threeWFSMean_B2_c_scan_clean.fits'.format(ii) for ii in fnum_Mean_B2_c ] stats_file = stats_dir + 'stats_closed_Mean_B2.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # EXPERIMENT 2 # Closed - nrej1 img_files = [ out_dir + 'obj{0:03d}threeWFSLS_nrej1_c_scan_clean.fits'.format(ii) for ii in fnum_nrej1 ] stats_file = stats_dir + 'stats_closed_nrej1.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # Closed - nrej4 img_files = [ out_dir + 'obj{0:03d}threeWFSLS_nrej4_c_scan_clean.fits'.format(ii) for ii in fnum_nrej4 ] stats_file = stats_dir + 'stats_closed_nrej4.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) # Closed - nrej7 img_files = [ out_dir + 'obj{0:03d}threeWFS_LS_c_scan_clean.fits'.format(ii) for ii in fnum_nrej7 ] stats_file = stats_dir + 'stats_closed_nrej7.fits' reduce_STA.calc_star_stats(img_files, output_stats=stats_file) moffat.fit_moffat(img_files, stats_file) return