Example #1
0
seq = iaa.Sequential([
    sometimes(
        iaa.CropAndPad(
            percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255))),
    iaa.SomeOf((0, 5), [
        sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))),
        iaa.OneOf([
            iaa.GaussianBlur((0, 3.0)),
            iaa.AverageBlur(k=(2, 7)),
            iaa.MedianBlur(k=(3, 11)),
        ]),
        iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
        iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
        iaa.SimplexNoiseAlpha(
            iaa.OneOf([
                iaa.EdgeDetect(alpha=(0.5, 1.0)),
                iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
            ])),
        iaa.AdditiveGaussianNoise(
            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
        iaa.OneOf([
            iaa.Dropout((0.01, 0.1), per_channel=0.5),
            iaa.CoarseDropout(
                (0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
        ]),
        iaa.Add((-10, 10), per_channel=0.5),
        iaa.OneOf([
            iaa.Multiply((0.5, 1.5), per_channel=0.5),
            iaa.FrequencyNoiseAlpha(exponent=(-4, 0),
                                    first=iaa.Multiply(
                                        (0.5, 1.5), per_channel=True),
                                    second=iaa.ContrastNormalization(
                                        (0.5, 2.0)))
        ]),
        iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
    ],
               random_order=True)
],
                     random_order=True)
def crop_seq(crop_size):
    seq = iaa.Sequential([fast_seq,
                          RandomCropFixedSize(px=crop_size)], random_order=False)
    return seq
Example #3
0
def load_images_from_folder(folder):
    images = []
    for filename in os.listdir(folder):
        img = cv2.imread(os.path.join(folder, filename))
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        if img is not None:
            images.append(img)
    return images


if __name__ == '__main__':
    images = load_images_from_folder(
        "/home/yang/PycharmProjects/carND/video_iamge/")
    seq = iaa.Sequential(
        [
            # Small gaussian blur with random sigma between 0 and 0.5.
            # But we only blur about 50% of all images.
            iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 0.5))),
            # Strengthen or weaken the contrast in each image.
            iaa.ContrastNormalization((0.75, 1.5)),
            # Make some images brighter and some darker.
            # In 20% of all cases, we sample the multiplier once per channel,
            # which can end up changing the color of the images.
            iaa.Multiply((0.8, 1.2), per_channel=0.2),
        ],
        random_order=True)  # apply augmenters in random order

    images_aug = seq.augment_images(images)
    seq.show_grid(images[0], 4, 4)
Example #4
0
class no:3
label 0:5893, label 0:65
'''

csv_train = Path(__file__).parent.parent.absolute().joinpath('datafiles', data_version, 'train.csv')
csv_valid = Path(__file__).parent.parent.absolute().joinpath('datafiles', data_version, 'valid.csv')
csv_test = Path(__file__).parent.parent.absolute().joinpath('datafiles', data_version, 'test.csv')

iaa = iaa.Sequential([
    # iaa.CropAndPad(percent=(-0.04, 0.04)),
    iaa.Fliplr(0.5),
    iaa.Flipud(0.25),

    iaa.GaussianBlur(sigma=(0.0, 0.3)),
    iaa.MultiplyBrightness(mul=(0.7, 1.3)),
    iaa.contrast.LinearContrast((0.7, 1.3)),
    iaa.Sometimes(0.9, iaa.Add((-8, 8))),
    iaa.Sometimes(0.9, iaa.Affine(
        scale=(0.98, 1.02),
        translate_percent={"x": (-0.06, 0.06), "y": (-0.06, 0.06)},
        rotate=(-15, 15),
    )),
])

batch_size_train, batch_size_valid = 32, 64

num_workers = 4  # when debugging it should be set to 0.

''' do not do resampling in this project
import pandas as pd
import numpy as np
Example #5
0
import os
from PIL import Image
from config import imshape, n_classes, labels, model_name
import imgaug as ia
from imgaug import augmenters as iaa
import cv2
import json
import tensorflow as tf

ia.seed(1)

seq = iaa.Sequential(
    [
        iaa.Fliplr(0.5),
        iaa.Multiply((1.2, 1.5)),
        iaa.Affine(
            #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
            rotate=(-90, 90)),
        iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 8)))
    ],
    random_order=True)


class DataGenerator(tf.keras.utils.Sequence):
    # Generates data for Keras
    def __init__(self,
                 image_paths,
                 annot_paths,
                 batch_size=32,
                 shuffle=True,
                 augment=False):
        self.image_paths = image_paths
Example #6
0
    def render(self, visibility=0.5, aug=None, display=False, debug=False):
        """
        Display the current state of the generator.
        :param visibility: portion of the card's image that must not be overlapped by other cards for the card to be
                           considered as visible
        :param aug: image augmentator to apply during rendering
        :param display: flag for displaying the rendering result
        :param debug: flag for debug
        :return: none
        """
        self.check_visibility(visibility=visibility)
        img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8)
        card_mask = cv2.imread(Config.card_mask_path)

        for card in self.cards:
            card_x = int(card.x + 0.5)
            card_y = int(card.y + 0.5)

            # Scale & rotate card image
            img_card = cv2.resize(card.img,
                                  (int(len(card.img[0]) * card.scale),
                                   int(len(card.img) * card.scale)))
            # Add a random glaring on individual card - it happens frequently in real life as MTG cards can reflect
            # the lights very well.
            if aug is not None:
                seq = iaa.Sequential([
                    iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(128)),
                                          size_px_max=[1, 3],
                                          upscale_method="cubic"),  # Lighting
                ])
                img_card = seq.augment_image(img_card)
            mask_scale = cv2.resize(card_mask,
                                    (int(len(card_mask[0]) * card.scale),
                                     int(len(card_mask) * card.scale)))
            img_mask = cv2.bitwise_and(img_card, mask_scale)
            img_rotate = imutils.rotate_bound(img_mask,
                                              card.theta / math.pi * 180)

            # Calculate the position of the card image in relation to the background
            # Crop the card image if it's out of boundary
            card_w = len(img_rotate[0])
            card_h = len(img_rotate)
            card_crop_x1 = max(0, card_w // 2 - card_x)
            card_crop_x2 = min(card_w,
                               card_w // 2 + len(img_result[0]) - card_x)
            card_crop_y1 = max(0, card_h // 2 - card_y)
            card_crop_y2 = min(card_h, card_h // 2 + len(img_result) - card_y)
            img_card_crop = img_rotate[card_crop_y1:card_crop_y2,
                                       card_crop_x1:card_crop_x2]

            # Calculate the position of the corresponding area in the background
            bg_crop_x1 = max(0, card_x - (card_w // 2))
            bg_crop_x2 = min(len(img_result[0]),
                             int(card_x + (card_w / 2) + 0.5))
            bg_crop_y1 = max(0, card_y - (card_h // 2))
            bg_crop_y2 = min(len(img_result), int(card_y + (card_h / 2) + 0.5))
            img_result_crop = img_result[bg_crop_y1:bg_crop_y2,
                                         bg_crop_x1:bg_crop_x2]

            # Override the background with the current card
            img_result_crop = np.where(img_card_crop, img_card_crop,
                                       img_result_crop)
            img_result[bg_crop_y1:bg_crop_y2,
                       bg_crop_x1:bg_crop_x2] = img_result_crop

            if debug:
                for ext_obj in card.objects:
                    if ext_obj.visible:
                        for pt in ext_obj.key_pts:
                            cv2.circle(
                                img_result,
                                card.coordinate_in_generator(pt[0], pt[1]), 2,
                                (1, 1, 255), 10)
                        bounding_box = card.bb_in_generator(ext_obj.key_pts)
                        cv2.rectangle(img_result, bounding_box[0],
                                      bounding_box[2], (1, 255, 1), 5)

        img_result = cv2.GaussianBlur(img_result, (5, 5), 0)

        # Skew the cards if it's provided
        if self.M is not None:
            img_result = cv2.warpPerspective(img_result, self.M,
                                             (self.width, self.height))
            if debug:
                for card in self.cards:
                    for ext_obj in card.objects:
                        if ext_obj.visible:
                            new_pts = np.array([[
                                list(card.coordinate_in_generator(
                                    pt[0], pt[1]))
                            ] for pt in ext_obj.key_pts],
                                               dtype=np.float32)
                            new_pts = cv2.perspectiveTransform(new_pts, self.M)
                            for pt in new_pts:
                                cv2.circle(img_result, (pt[0][0], pt[0][1]), 2,
                                           (255, 1, 1), 10)

        img_bg = cv2.resize(self.img_bg, (self.width, self.height))
        img_result = np.where(img_result, img_result, img_bg)

        # Apply image augmentation
        if aug is not None:
            img_result = aug.augment_image(img_result)

        if display or debug:
            cv2.imshow('Result', img_result)
            cv2.waitKey(0)

        self.img_result = img_result
        pass
import numpy as np
import re

from imgaug import augmenters as iaa
from skimage import io
from scipy.misc import imsave

seq = iaa.Sequential([
    iaa.Crop(
        px=(0,
            16)),  # crop images from each side by 0 to 16px (randomly chosen)
    iaa.Affine(rotate=(-25, 25), shear=(-8, 8)),
])


def imread_convert(f):
    return io.imread(f).astype(np.uint8)


def load_data_from_folder(dir):
    # read all images into an image collection
    ic = io.ImageCollection(dir + "*.bmp", load_func=imread_convert)

    #create one large array of image data
    data = io.concatenate_images(ic)

    #extract labels from image names
    labels = np.array(ic.files)
    for i, f in enumerate(labels):
        m = re.search("_", f)
        labels[i] = f[len(dir):m.start()]
def create_list_of_augmenters(flip_vertical=True,
                              flip_horizontal=True,
                              random_rotations=True):
    '''Creates a list of image augmenters.

    Description :
        Creates a list of image augmenters that can possibly flip an image vertically,
        horizontally and perform clockwise rotations in increments of 90 degrees out
        of [90,180,270,360].

    Arguments :
        flip_vertical    -- Bool.
                            The augmenters created will have the ability to flip
                            images vertically.
        flip_horizontal  -- Bool.
                            The augmenters created will have the ability to flip
                            images horizontally.
        random_rotations -- Bool.
                            The augmenters created will have the ability to rotate
                            images by 90,180,270 and 360 degrees.

    Returns :
        ans -- List.
               The list contains a number of image augmenters that have the capability to perform
               flips and rotations as decided by the input parameters "flip_vertical",
               "flip_horizontal" and "random_rotations". If all three parameters are "false"
               then "None" is returned.
    '''

    if flip_vertical and flip_horizontal and random_rotations:

        ans = {}

        # flip up down
        flip_ud = 1.0

        # flip left right
        flip_lr = 1.0

        # Add 4 augmenters with different rotation capabilities.
        for i in range(4):

            string = str(i)

            ans[string] = iaa.Sequential([
                iaa.Flipud(flip_ud),
                iaa.Fliplr(flip_lr),
                iaa.Affine(rotate=i * 90, cval=0),
            ])
        return ans

    elif flip_vertical and flip_horizontal and (not random_rotations):

        ans = {}

        # flip up down
        flip_ud = 1.0

        # flip left right
        flip_lr = 1.0

        ans["0"] = iaa.Sequential([
            iaa.Flipud(flip_ud),
            iaa.Fliplr(flip_lr),
        ])

        return ans

    elif flip_vertical and (not flip_horizontal) and (not random_rotations):

        ans = {}

        # flip up down
        flip_ud = 1.0

        ans["0"] = iaa.Sequential([
            iaa.Flipud(flip_ud),
        ])

        return ans

    elif flip_vertical and (not flip_horizontal) and random_rotations:

        ans = {}

        # flip up down
        flip_ud = 1.0

        # Add 4 augmenters with different rotation capabilities.
        for i in range(4):

            string = str(i)

            ans[string] = iaa.Sequential([
                iaa.Flipud(flip_ud),
                iaa.Affine(rotate=i * 90, cval=0),
            ])

        return ans

    elif (not flip_vertical) and flip_horizontal and (not random_rotations):

        ans = {}

        # flip left right
        flip_lr = 1.0

        ans["0"] = iaa.Sequential([
            iaa.Fliplr(1.0),
        ])

        return ans

    elif (not flip_vertical) and flip_horizontal and random_rotations:

        ans = {}

        # flip left right
        flip_lr = 1.0

        # Add 4 augmenters with different rotation capabilities.
        for i in range(4):

            string = str(i)

            ans[string] = iaa.Sequential([
                iaa.Fliplr(1.0),
                iaa.Affine(rotate=i * 90, cval=0),
            ])

        return ans

    elif (not flip_vertical) and (not flip_horizontal) and random_rotations:

        ans = {}

        # Add 4 augmenters with different rotation capabilities.
        for i in range(4):

            string = str(i)

            ans[string] = iaa.Sequential([
                iaa.Affine(rotate=i * 90, cval=0),
            ])

        return ans

    else:
        return None
Example #9
0
def main(cfg):

    device = torch.device('cuda' if cfg.cuda else 'cpu')

    autoenc = DeepLabv3Plus()
    model = Siamese(autoenc,
                    in_channels=3,
                    n_edges=cfg.n_edges,
                    sp_pool_use_max=cfg.sp_pooling_max)
    if (cfg.checkpoint_autoenc is not None):
        print('loading checkpoint {}'.format(cfg.checkpoint_autoenc))
        state_dict = torch.load(cfg.checkpoint_autoenc,
                                map_location=lambda storage, loc: storage)
        autoenc.load_state_dict(state_dict)
    elif (cfg.checkpoint_siam is not None):
        print('loading checkpoint {}'.format(cfg.checkpoint_siam))
        state_dict = torch.load(cfg.checkpoint_siam,
                                map_location=lambda storage, loc: storage)
        model.load_state_dict(state_dict)

    autoenc.to(device)
    model.to(device)

    transf = iaa.Sequential([
        iaa.Invert(0.5) if 'Dataset1' in 'Dataset' +
        cfg.train_dir else iaa.Noop(),
        iaa.SomeOf(3, [
            iaa.Affine(scale={
                "x": (1 - cfg.aug_scale, 1 + cfg.aug_scale),
                "y": (1 - cfg.aug_scale, 1 + cfg.aug_scale)
            },
                       rotate=(-cfg.aug_rotate, cfg.aug_rotate),
                       shear=(-cfg.aug_shear, cfg.aug_shear)),
            iaa.SomeOf(1, [
                iaa.AdditiveGaussianNoise(scale=cfg.aug_noise * 255),
                iaa.GaussianBlur(sigma=(0., cfg.aug_blur)),
                iaa.GammaContrast((0., cfg.aug_gamma))
            ]),
            iaa.Fliplr(p=0.5),
            iaa.Flipud(p=0.5)
        ]), rescale_augmenter
    ])

    transf_normal = Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])

    dl_train = Loader(pjoin(cfg.in_root, 'Dataset' + cfg.train_dir),
                      augmentation=transf,
                      n_segments=cfg.n_segments_train,
                      delta_segments=cfg.delta_segments_train,
                      normalization=transf_normal)

    dl_test = torch.utils.data.ConcatDataset([
        Loader(pjoin(cfg.in_root, 'Dataset' + d),
               augmentation=transf,
               n_segments=cfg.n_segments_test,
               delta_segments=cfg.delta_segments_test,
               normalization=transf_normal) for d in cfg.test_dirs
    ])

    dataloader_train = DataLoader(dl_train,
                                  batch_size=cfg.batch_size,
                                  sampler=SubsetRandomSampler(
                                      cfg.n_frames_epoch * cfg.train_frames),
                                  collate_fn=dl_train.collate_fn,
                                  drop_last=True,
                                  num_workers=cfg.n_workers)

    dataloader_test = DataLoader(dl_test,
                                 batch_size=cfg.batch_size,
                                 collate_fn=dl_train.collate_fn,
                                 sampler=torch.utils.data.RandomSampler(
                                     dl_test,
                                     replacement=True,
                                     num_samples=cfg.batch_size),
                                 num_workers=cfg.n_workers)

    dataloaders = {'train': dataloader_train, 'test': dataloader_test}

    d = datetime.datetime.now()

    ds_dir = os.path.split('Dataset' + cfg.train_dir)[-1]

    run_dir = pjoin(cfg.out_dir,
                    '{}_{:%Y-%m-%d_%H-%M}_{}'.format(ds_dir, d, cfg.exp_name))

    if (not os.path.exists(run_dir)):
        os.makedirs(run_dir)

    # Save cfg
    with open(pjoin(run_dir, 'cfg.yml'), 'w') as outfile:
        yaml.dump(cfg.__dict__, stream=outfile, default_flow_style=False)

    # convert batch to device
    batch_to_device = lambda batch: {
        k: v.to(device) if (isinstance(v, torch.Tensor)) else v
        for k, v in batch.items()
    }

    optimizer = optim.SGD(params=[{
        'params': model.autoenc.encoder.parameters(),
        'lr': cfg.lr_autoenc
    }, {
        'params': model.autoenc.aspp.parameters(),
        'lr': cfg.lr_autoenc
    }, {
        'params': model.autoenc.decoder.parameters(),
        'lr': cfg.lr_siam
    }, {
        'params': model.linear1.parameters(),
        'lr': cfg.lr_siam
    }, {
        'params': model.linear2.parameters(),
        'lr': cfg.lr_siam
    }],
                          momentum=cfg.momentum,
                          weight_decay=cfg.decay)

    utls.setup_logging(run_dir)
    logger = logging.getLogger('siam')

    logger.info('run_dir: {}'.format(run_dir))

    train(cfg, model, dataloaders, run_dir, batch_to_device, optimizer, logger)

    logger.info('training siam')
Example #10
0
# Define our sequence of augmentation steps that will be applied to every image
seq = iaa.Sequential(
    [
        # apply the following augmenters to most images
        # iaa.Fliplr(0.5), # horizontally flip 50% of all images
        # iaa.Flipud(0.2), # vertically flip 20% of all images
        # crop images by -5% to 10% of their height/width
        sometimes(iaa.CropAndPad(
            percent=(-0.05, 0.1),
            pad_mode=ia.ALL,
            pad_cval=(0, 255)
        )),
        sometimes(iaa.Affine(
            # scale images to 80-120% of their size, individually per axis
            scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
            # translate by -20 to +20 percent (per axis)
            translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
            rotate=(-45, 45),  # rotate by -45 to +45 degrees
            shear=(-16, 16),  # shear by -16 to +16 degrees
            # use nearest neighbour or bilinear interpolation (fast)
            order=[0, 1],
            cval=(0, 255),  # if mode is constant, use a cval between 0 and 255
            # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            mode=ia.ALL
        ))
    ],
    random_order=True
)

Example #11
0
def draw_single_sequential_images():
    ia.seed(44)

    #image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128))
    image = ia.quokka_square(size=(128, 128))

    sometimes = lambda aug: iaa.Sometimes(0.5, aug)
    seq = iaa.Sequential(
        [
            # apply the following augmenters to most images
            iaa.Fliplr(0.5), # horizontally flip 50% of all images
            iaa.Flipud(0.2), # vertically flip 20% of all images
            # crop images by -5% to 10% of their height/width
            sometimes(iaa.CropAndPad(
                percent=(-0.05, 0.1),
                pad_mode=ia.ALL,
                pad_cval=(0, 255)
            )),
            sometimes(iaa.Affine(
                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                rotate=(-45, 45), # rotate by -45 to +45 degrees
                shear=(-16, 16), # shear by -16 to +16 degrees
                order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True
            )
        ],
        random_order=True
    )

    grid = seq.draw_grid(image, cols=8, rows=8)
    misc.imsave("examples_grid.jpg", grid)
Example #12
0
sys.path.append('./')
import utils.losses as losses
import utils.detectors as detectors
import utils.metrics as metrics
import utils.optimizer as optim
from models.model_builder import getModel
from datasets.data_loader import getDataLoader
import imgaug.augmenters as iaa
from config import cfg

global global_cfg
global_cfg = dict()

seq0 = iaa.Sequential([
    #iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True),
    iaa.SigmoidContrast(gain=(3, 14), cutoff=(0.4, 0.6)),
    iaa.PerspectiveTransform(scale=(0.01, 0.15)),
])


def summary_write(summary, writer):
    for key in summary.keys():
        writer.add_scalar(key, summary[key], summary['epoch'])


def train_epoch_wo_outlier(model, optimizer, in_loader, loss_func, cur_epoch,
                           op_cfg, writer):
    global global_cfg
    model.train()
    avg_loss = 0
    correct = 0
Example #13
0
#endregion

model_file_transfer_base = 'transfer_vessel_seg_patch-012-0.968_0.68_0.81.hdf5'
# model_file_transfer_base = 'transfer_vessel_seg_patch-014-0.970-014-0.682_0.810.hdf5'
# model_file_transfer_base = 'transfer_014-0.969-014-0.669_0.801.hdf5'  # a little bad performance

# region data generator
image_shape = (PATCH_SIZE, PATCH_SIZE, 3)

from imgaug import augmenters as iaa

sometimes = lambda aug: iaa.Sometimes(0.96, aug)
imgaug_train_seq = iaa.Sequential([
    # iaa.CropAndPad(percent=(-0.04, 0.04)),
    iaa.Fliplr(0.5),  # horizontally flip 50% of the images
    iaa.Flipud(0.2),  # horizontally flip 50% of the images
    sometimes(iaa.ContrastNormalization((0.9, 1.1))),
    iaa.Sometimes(0.9, iaa.Add((-6, 6))),
])

my_gen_train = my_Generator_seg(train_image_files,
                                train_mask_files,
                                image_shape=image_shape,
                                batch_size=BATCH_SIZE_TRAIN,
                                imgaug_seq=imgaug_train_seq,
                                single_channel_no=1)

my_gen_valid = my_Generator_seg(valid_image_files,
                                valid_mask_files,
                                image_shape=image_shape,
                                batch_size=BATCH_SIZE_VALID,
Example #14
0
def main():
    parser = argparse.ArgumentParser(description="Check augmenters visually.")
    parser.add_argument(
        "--only",
        default=None,
        help=
        "If this is set, then only the results of an augmenter with this name will be shown. "
        "Optionally, comma-separated list.",
        required=False)
    args = parser.parse_args()

    images = [
        ia.quokka_square(size=(128, 128)),
        ia.imresize_single_image(data.astronaut(), (128, 128))
    ]

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=50, y=40),
            ia.Keypoint(x=70, y=38),
            ia.Keypoint(x=62, y=52)
        ],
                            shape=images[0].shape),
        ia.KeypointsOnImage([
            ia.Keypoint(x=55, y=32),
            ia.Keypoint(x=42, y=95),
            ia.Keypoint(x=75, y=89)
        ],
                            shape=images[1].shape)
    ]

    bounding_boxes = [
        ia.BoundingBoxesOnImage([
            ia.BoundingBox(x1=10, y1=10, x2=20, y2=20),
            ia.BoundingBox(x1=40, y1=50, x2=70, y2=60)
        ],
                                shape=images[0].shape),
        ia.BoundingBoxesOnImage([
            ia.BoundingBox(x1=10, y1=10, x2=20, y2=20),
            ia.BoundingBox(x1=40, y1=50, x2=70, y2=60)
        ],
                                shape=images[1].shape)
    ]

    augmenters = [
        iaa.Sequential([
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                       name="Sequential"),
        iaa.SomeOf(2,
                   children=[
                       iaa.CoarseDropout(p=0.5, size_percent=0.05),
                       iaa.AdditiveGaussianNoise(scale=0.1 * 255),
                       iaa.Crop(percent=0.1)
                   ],
                   name="SomeOf"),
        iaa.OneOf(children=[
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                  name="OneOf"),
        iaa.Sometimes(0.5,
                      iaa.AdditiveGaussianNoise(scale=0.1 * 255),
                      name="Sometimes"),
        iaa.WithColorspace("HSV",
                           children=[iaa.Add(20)],
                           name="WithColorspace"),
        iaa.WithChannels([0], children=[iaa.Add(20)], name="WithChannels"),
        iaa.AddToHueAndSaturation((-20, 20),
                                  per_channel=True,
                                  name="AddToHueAndSaturation"),
        iaa.Noop(name="Noop"),
        iaa.Scale({
            "width": 64,
            "height": 64
        }, name="Scale"),
        iaa.CropAndPad(px=(-8, 8), name="CropAndPad-px"),
        iaa.Pad(px=(0, 8), name="Pad-px"),
        iaa.Crop(px=(0, 8), name="Crop-px"),
        iaa.Crop(percent=(0, 0.1), name="Crop-percent"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"),
        iaa.Grayscale(0.5, name="Grayscale0.5"),
        iaa.Grayscale(1.0, name="Grayscale1.0"),
        iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
        iaa.AverageBlur(k=(3, 11), name="AverageBlur"),
        iaa.MedianBlur(k=(3, 11), name="MedianBlur"),
        iaa.BilateralBlur(d=10, name="BilateralBlur"),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0, 2.0), name="Sharpen"),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0),
                               direction=(0, 1.0),
                               name="DirectedEdgeDetect"),
        iaa.Add((-50, 50), name="Add"),
        iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"),
        iaa.AddElementwise((-50, 50), name="AddElementwise"),
        iaa.AdditiveGaussianNoise(loc=0,
                                  scale=(0.0, 0.1 * 255),
                                  name="AdditiveGaussianNoise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.Dropout((0.0, 0.1), name="Dropout"),
        iaa.CoarseDropout(p=0.05,
                          size_percent=(0.05, 0.5),
                          name="CoarseDropout"),
        iaa.Invert(p=0.5, name="Invert"),
        iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"),
        iaa.ContrastNormalization(alpha=(0.5, 2.0),
                                  name="ContrastNormalization"),
        iaa.SaltAndPepper(p=0.05, name="SaltAndPepper"),
        iaa.Salt(p=0.05, name="Salt"),
        iaa.Pepper(p=0.05, name="Pepper"),
        iaa.CoarseSaltAndPepper(p=0.05,
                                size_percent=(0.01, 0.1),
                                name="CoarseSaltAndPepper"),
        iaa.CoarseSalt(p=0.05, size_percent=(0.01, 0.1), name="CoarseSalt"),
        iaa.CoarsePepper(p=0.05, size_percent=(0.01, 0.1),
                         name="CoarsePepper"),
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_px={
                       "x": (-16, 16),
                       "y": (-16, 16)
                   },
                   rotate=(-45, 45),
                   shear=(-16, 16),
                   order=ia.ALL,
                   cval=(0, 255),
                   mode=ia.ALL,
                   name="Affine"),
        iaa.PiecewiseAffine(scale=0.03,
                            nb_rows=(2, 6),
                            nb_cols=(2, 6),
                            name="PiecewiseAffine"),
        iaa.PerspectiveTransform(scale=0.1, name="PerspectiveTransform"),
        iaa.ElasticTransformation(alpha=(0.5, 8.0),
                                  sigma=1.0,
                                  name="ElasticTransformation"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Add(100),
                  second=iaa.Dropout(0.5),
                  per_channel=False,
                  name="Alpha"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Add(100),
                  second=iaa.Dropout(0.5),
                  per_channel=True,
                  name="AlphaPerChannel"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Affine(rotate=(-45, 45)),
                  per_channel=True,
                  name="AlphaAffine"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Add(50),
                             second=iaa.ContrastNormalization(2.0),
                             per_channel=False,
                             name="AlphaElementwise"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Add(50),
                             second=iaa.ContrastNormalization(2.0),
                             per_channel=True,
                             name="AlphaElementwisePerChannel"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Affine(rotate=(-45, 45)),
                             per_channel=True,
                             name="AlphaElementwiseAffine"),
        iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0),
                              per_channel=False,
                              name="SimplexNoiseAlpha"),
        iaa.FrequencyNoiseAlpha(first=iaa.EdgeDetect(1.0),
                                per_channel=False,
                                name="FrequencyNoiseAlpha")
    ]

    augmenters.append(
        iaa.Sequential([iaa.Sometimes(0.2, aug.copy()) for aug in augmenters],
                       name="Sequential"))
    augmenters.append(
        iaa.Sometimes(0.5, [aug.copy() for aug in augmenters],
                      name="Sometimes"))

    for augmenter in augmenters:
        if args.only is None or augmenter.name in [
                v.strip() for v in args.only.split(",")
        ]:
            print("Augmenter: %s" % (augmenter.name, ))
            grid = []
            for image, kps, bbs in zip(images, keypoints, bounding_boxes):
                aug_det = augmenter.to_deterministic()
                imgs_aug = aug_det.augment_images(
                    np.tile(image[np.newaxis, ...], (16, 1, 1, 1)))
                kps_aug = aug_det.augment_keypoints([kps] * 16)
                bbs_aug = aug_det.augment_bounding_boxes([bbs] * 16)
                imgs_aug_drawn = [
                    kps_aug_one.draw_on_image(img_aug)
                    for img_aug, kps_aug_one in zip(imgs_aug, kps_aug)
                ]
                imgs_aug_drawn = [
                    bbs_aug_one.draw_on_image(img_aug)
                    for img_aug, bbs_aug_one in zip(imgs_aug_drawn, bbs_aug)
                ]
                grid.append(np.hstack(imgs_aug_drawn))
            ia.imshow(np.vstack(grid))
Example #15
0
 def __init__(self, prob, scale):
     self.prob = prob
     self.seq = iaa.Sequential([iaa.AdditiveGaussianNoise(scale)])
Example #16
0
    Returns:
    
    A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats
    """
    expanded_tensor = tf.expand_dims(tensor, -1)
    multiples = [1] + repeats
    tiled_tensor = tf.tile(expanded_tensor, multiples=multiples)
    repeated_tesnor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
    return repeated_tesnor


# data aug
seq = iaa.Sequential(
    [
        iaa.Fliplr(1.0),  # horizontal flips
        iaa.Sometimes(0.1, iaa.GaussianBlur(sigma=(0, 0.5)))
    ],
    random_order=True)  # apply augmenters in random order


# class
class CNN():
    def __init__(self, k, inc, out):
        self.w = tf.Variable(tf.truncated_normal([k, k, inc, out],
                                                 stddev=0.05))
        self.m, self.v = tf.Variable(tf.zeros_like(self.w)), tf.Variable(
            tf.zeros_like(self.w))

    def getw(self):
        return self.w
Example #17
0
def main():
    images = [
        misc.imresize(
            ndimage.imread("../quokka.jpg")[0:643, 0:643], (128, 128)),
        misc.imresize(data.astronaut(), (128, 128))
    ]

    augmenters = [
        iaa.Noop(name="Noop"),
        iaa.Crop(px=(0, 8), name="Crop-px"),
        iaa.Crop(percent=(0, 0.1), name="Crop-percent"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"),
        iaa.Grayscale(0.5, name="Grayscale0.5"),
        iaa.Grayscale(1.0, name="Grayscale1.0"),
        iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
        iaa.Sharpen(alpha=(0.1, 1.0), strength=(0, 2.0), name="Sharpen"),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0),
                               direction=(0, 1.0),
                               name="DirectedEdgeDetect"),
        iaa.AdditiveGaussianNoise(loc=0,
                                  scale=(0.0, 0.1 * 255),
                                  name="AdditiveGaussianNoise"),
        iaa.Dropout((0.0, 0.1), name="Dropout"),
        iaa.Invert(p=0.5, name="Invert"),
        iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"),
        iaa.Add((-50, 50), name="Add"),
        iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"),
        iaa.AddElementwise((-50, 50), name="AddElementwise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.ContrastNormalization(alpha=(0.5, 2.0),
                                  name="ContrastNormalization"),
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_px={
                       "x": (-16, 16),
                       "y": (-16, 16)
                   },
                   rotate=(-45, 45),
                   shear=(-16, 16),
                   order=ia.ALL,
                   cval=(0, 1.0),
                   mode=ia.ALL,
                   name="Affine"),
        iaa.ElasticTransformation(alpha=(0.5, 8.0),
                                  sigma=1.0,
                                  name="ElasticTransformation")
    ]

    #for i, aug in enumerate(augmenters):
    #print(i)
    #aug.deepcopy()
    #import copy
    #copy.deepcopy(aug)
    seq = iaa.Sequential([aug.copy() for aug in augmenters], name="Sequential")
    st = iaa.Sometimes(0.5, seq.copy(), name="Sometimes")
    augmenters.append(seq)
    augmenters.append(st)

    for augmenter in augmenters:
        print("Augmenter: %s" % (augmenter.name, ))
        grid = augmenter.draw_grid(images, rows=1, cols=16)
        misc.imshow(grid)
Example #18
0
    def __init__(self):
        configMain.__init__(self)

        st = lambda aug: iaa.Sometimes(0.2, aug)
        oc = lambda aug: iaa.Sometimes(0.1, aug)
        rl = lambda aug: iaa.Sometimes(0.05, aug)

        self.augment = [
            iaa.Sequential(
                [
                    rl(iaa.GaussianBlur(
                        (0,
                         1.3))),  # blur images with a sigma between 0 and 1.5
                    rl(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05),
                            per_channel=0.5)),  # add gaussian noise to images
                    rl(iaa.Dropout((0.0, 0.10), per_channel=0.5)
                       ),  # randomly remove up to X% of the pixels
                    oc(
                        iaa.Add((-20, 20), per_channel=0.5)
                    ),  # change brightness of images (by -X to Y of original value)
                    st(iaa.Multiply(
                        (0.25, 2.5), per_channel=0.2
                    )),  # change brightness of images (X-Y% of original value)
                    rl(iaa.ContrastNormalization(
                        (0.5, 1.5),
                        per_channel=0.5)),  # improve or worsen the contrast
                    rl(iaa.Grayscale((0.0, 1))),  # put grayscale
                ],
                random_order=True  # do all of the above in random order
            )
        ] * 3

        all_files = []
        self.val_db_path = []
        ids = [
            "steer103_v5_way_v2", 'steer103_v5_way_v2_town02',
            "nonoise_town03_way", "nonoise_town02_way", "nonoise_town04_way"
        ]

        for id in ids:
            all_files += glob.glob(
                "/data/yang/code/aws/scratch/carla_collect/" + id +
                "/*/data_*.h5")

            for valid in range(1, 15, 3):
                self.val_db_path += glob.glob(
                    "/data/yang/code/aws/scratch/carla_collect/" + id +
                    "/*WeatherId=" + str(valid).zfill(2) + "/data_*.h5")

        self.train_db_path = list(set(all_files) - set(self.val_db_path))

        self.speed_factor = 40.0  # In KM/H

        # The division is made by three diferent data kinds
        # in every mini-batch there will be equal number of samples with labels from each group
        # e.g. for [[0,1],[2]] there will be 50% samples with labels 0 and 1, and 50% samples with label 2
        self.labels_per_division = [[0, 2, 5], [3], [4]]
        self.dataset_names = ['targets']
        self.queue_capacity = 5  # now measured in how many batches
Example #19
0
def main(args):
    random.seed()
    ia.seed(random.randrange(10000))

    bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' %
                                       Config.data_dir,
                                       dump_it=False)
    background = generate_data.Backgrounds(images=bg_images)

    card_pool = pd.DataFrame()
    for set_name in Config.all_set_list:
        df = fetch_data.load_all_cards_text('%s/csv/%s.csv' %
                                            (Config.data_dir, set_name))
        card_pool = card_pool.append(df)
    class_ids = {}
    with open('%s/obj.names' % Config.data_dir) as names_file:
        class_name_list = names_file.read().splitlines()
        for i in range(len(class_name_list)):
            class_ids[class_name_list[i]] = i

    for i in range(args.num_gen):
        # Arbitrarily select top left and right corners for perspective transformation
        # Since the training image are generated with random rotation, don't need to skew all four sides
        skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1],
                [random.uniform(0.75, 1), 0]]
        generator = ImageGenerator(background.get_random(),
                                   class_ids,
                                   args.width,
                                   args.height,
                                   skew=skew)
        out_name = ''

        # Use 2 to 5 cards per generator
        for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows():
            img_name = '%s/card_img/png/%s/%s_%s.png' % (
                Config.data_dir, card_info['set'],
                card_info['collector_number'],
                fetch_data.get_valid_filename(card_info['name']))
            out_name += '%s%s_' % (card_info['set'],
                                   card_info['collector_number'])
            card_img = cv2.imread(img_name)
            if card_img is None:
                fetch_data.fetch_card_image(
                    card_info,
                    out_dir='%s/card_img/png/%s' %
                    (Config.data_dir, card_info['set']))
                card_img = cv2.imread(img_name)
            if card_img is None:
                print('WARNING: card %s is not found!' % img_name)
            detected_object_list = generate_data.apply_bounding_box(
                card_img, card_info)
            card = Card(card_img, card_info, detected_object_list)
            generator.add_card(card)

        for j in range(args.num_iter):
            seq = iaa.Sequential([
                iaa.Multiply((0.8, 1.2)),  # darken / brighten the whole image
                iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)),
                                      per_channel=0.1,
                                      size_px_max=[3, 6],
                                      upscale_method="cubic"),  # Lighting
                iaa.AdditiveGaussianNoise(scale=random.uniform(0, 0.05) * 255,
                                          per_channel=0.1),  # Noises
                iaa.Dropout(p=[0, 0.05], per_channel=0.1)  # Dropout
            ])

            if i % 3 == 0:
                generator.generate_non_obstructive()
                generator.export_training_data(
                    visibility=0.0,
                    out_name='%s/train/non_obstructive_update/%s%d' %
                    (Config.data_dir, out_name, j),
                    aug=seq)
            elif i % 3 == 1:
                generator.generate_horizontal_span(
                    theta=random.uniform(-math.pi, math.pi))
                generator.export_training_data(
                    visibility=0.0,
                    out_name='%s/train/horizontal_span_update/%s%d' %
                    (Config.data_dir, out_name, j),
                    aug=seq)
            else:
                generator.generate_vertical_span(
                    theta=random.uniform(-math.pi, math.pi))
                generator.export_training_data(
                    visibility=0.0,
                    out_name='%s/train/vertical_span_update/%s%d' %
                    (Config.data_dir, out_name, j),
                    aug=seq)

            #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
            #generator.render(display=True, aug=seq, debug=True)
            print('Generated %s%d' % (out_name, j))
            generator.img_bg = background.get_random()
    pass
Example #20
0
    img = np.array(img)

    bndbox = read_xml_annotation(cmd, str(image_id) + '.xml')

    bbs = ia.BoundingBoxesOnImage(
        [
            ia.BoundingBox(
                x1=bndbox[0], y1=bndbox[1], x2=bndbox[2], y2=bndbox[3])  #改这里!
        ],
        shape=img.shape)
    seq = iaa.Sequential([
        iaa.Flipud(0.5),  # vertically flip 20% of all images
        iaa.Multiply((1.2, 1.5)),  # change brightness, doesn't affect BBs
        iaa.Affine(
            translate_px={
                "x": 10,
                "y": 10
            },
            scale=(0.8, 0.95),
            rotate=(-10, 10)
        )  # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
    ])
    seq_det = seq.to_deterministic()  # 保持坐标和图像同步改变,而不是随机
    image_aug = seq_det.augment_images([img])[0]
    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]

    before = bbs.bounding_boxes[0]
    after = bbs_aug.bounding_boxes[0]
    print("BB : (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" %
          (before.x1, before.y1, before.x2, before.y2, after.x1, after.y1,
           after.x2, after.y2))
Example #21
0
ia.seed(seed)

seq = iaa.Sequential([
    # iaa.AddToHueAndSaturation((-1, 1),per_channel=True)        
    # iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)
    iaa.MultiplySaturation((0.5, 1.5)),
    
    # iaa.Crop(px=(0, 16)), 
    # crop images from each side by 0 to 16px (randomly chosen)

    # iaa.Fliplr(0.5), 
    # horizontally flip 50% of the images

    iaa.GaussianBlur(sigma=(0, 3.0)), 
    # blur images with a sigma of 0 to 3.0
    
    iaa.LinearContrast((0.75, 1.5)),
    # Strengthen or weaken the contrast in each image.
    
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
    # Add gaussian noise.
    
    iaa.Multiply((0.8, 1.2), per_channel=0.2),
    # Make some images brighter and some darker.
    # In 20% of all cases, we sample the multiplier once per channel,
    # which can end up changing the color of the images.
    ], random_order=True)

def augment(img):
    img=np.array(img,dtype=np.uint8)
Example #22
0
    def __init__(self, path='/'):
        configMain.__init__(self)

        st = lambda aug: iaa.Sometimes(0.2, aug)
        oc = lambda aug: iaa.Sometimes(0.1, aug)
        rl = lambda aug: iaa.Sometimes(0.05, aug)
        self.augment = [
            iaa.Sequential(
                [
                    rl(iaa.GaussianBlur(
                        (0,
                         1.3))),  # blur images with a sigma between 0 and 1.5
                    rl(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05),
                            per_channel=0.5)),  # add gaussian noise to images
                    rl(iaa.Dropout((0.0, 0.10), per_channel=0.5)
                       ),  # randomly remove up to X% of the pixels
                    oc(
                        iaa.Add((-20, 20), per_channel=0.5)
                    ),  # change brightness of images (by -X to Y of original value)
                    st(iaa.Multiply(
                        (0.25, 2.5), per_channel=0.2
                    )),  # change brightness of images (X-Y% of original value)
                    rl(iaa.ContrastNormalization(
                        (0.5, 1.5),
                        per_channel=0.5)),  # improve or worsen the contrast
                    rl(iaa.Grayscale((0.0, 1))),  # put grayscale
                ],
                random_order=True  # do all of the above in random order
            ),
            iaa.Sequential(
                [  # AUGMENTATION Labels
                    rl(iaa.Dropout(
                        (0.0,
                         0.03))),  # randomly remove up to X% of the pixels
                    rl(iaa.CoarseDropout((0.0, 0.03), size_percent=(
                        0.2, 0.3))),  # randomly remove up to X% of the pixels
                ],
                random_order=True  # do all of the above in random order
            )
        ]

        # self.augment = [None]

        # there are files with data, 200 images each, and here we select which ones to use

        self.dataset_name = 'Carla'

        train_path = os.path.join(path, 'RC28_wpz_M')
        val_path = os.path.join(path, 'RC025Val')
        print(train_path)

        self.train_db_path = [
            os.path.join(train_path, f)
            for f in glob.glob1(train_path, "data_*.h5")
        ]
        self.val_db_path = [
            os.path.join(val_path, f)
            for f in glob.glob1(val_path, "data_*.h5")
        ]

        # Speed Divide Factor

        # TODO: FOr now is hardcooded, but eventually we should be able to calculate this from data at the loading time.
        self.speed_factor = 40.0  # In KM/H FOR GTA it should be maximun 30.0

        # The division is made by three diferent data kinds
        # in every mini-batch there will be equal number of samples with labels from each group
        # e.g. for [[0,1],[2]] there will be 50% samples with labels 0 and 1, and 50% samples with label 2
        self.labels_per_division = [[0, 2, 5], [3], [4]]

        self.dataset_names = ['targets']

        self.queue_capacity = 20 * self.batch_size
Example #23
0
    def calc_sp_feats(self, cfg):
        """ 
        Computes UNet features in Autoencoder-mode
        Train/forward-propagate Unet and save features/weights
        """

        df_fname = 'sp_desc_{}.p'
        cp_fname = 'checkpoint_{}.pth.tar'
        bm_fname = 'best_model_{}.pth.tar'

        df_path = os.path.join(self.desc_path, df_fname)
        bm_path = os.path.join(self.desc_path, bm_fname)
        cp_path = os.path.join(self.desc_path, cp_fname)

        from ksptrack.models.deeplab import DeepLabv3Plus

        transf = iaa.Sequential([
            iaa.SomeOf(cfg.feat_data_someof, [
                iaa.Affine(
                    scale={
                        "x": (1 - cfg.feat_data_width_shift,
                              1 + cfg.feat_data_width_shift),
                        "y": (1 - cfg.feat_data_height_shift,
                              1 + cfg.feat_data_height_shift)
                    },
                    rotate=(-cfg.feat_data_rot_range, cfg.feat_data_rot_range),
                    shear=(-cfg.feat_data_shear_range,
                           cfg.feat_data_shear_range)),
                iaa.AdditiveGaussianNoise(
                    scale=cfg.feat_data_gaussian_noise_std * 255),
                iaa.Fliplr(p=0.5),
                iaa.Flipud(p=0.5)
            ]), rescale_augmenter,
            Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

        dl = LocPriorDataset(root_path=self.root_path,
                             sig_prior=cfg.feat_locs_gaussian_std,
                             augmentations=transf)
        if (self.feats_mode == 'autoenc'):
            sampler = None
            shuffle = True
        else:
            idx_refine = np.repeat(np.arange(len(dl)), 120 // len(dl))
            sampler = SubsetRandomSampler(idx_refine)
            shuffle = False

        dataloader = DataLoader(dl,
                                batch_size=cfg.batch_size,
                                shuffle=shuffle,
                                sampler=sampler,
                                collate_fn=dl.collate_fn,
                                drop_last=True,
                                num_workers=cfg.feat_n_workers)
        model = DeepLabv3Plus(pretrained=False)
        train_model(model, cfg, dataloader, cp_path.format('autoenc'),
                    self.desc_path, cp_fname, bm_fname, self.feats_mode)

        # Do forward pass on images and retrieve features
        if (not os.path.exists(df_path.format(self.feats_mode))):
            self.logger.info("Computing features on superpixels")

            transf = iaa.Sequential([
                rescale_augmenter,
                Normalize(mean=[0.485, 0.456, 0.406],
                          std=[0.229, 0.224, 0.225])
            ])

            dl.augmentations = transf
            dataloader = DataLoader(dl, batch_size=1, collate_fn=dl.collate_fn)
            model = DeepLabv3Plus()
            feats_sp = get_features(model, cfg, dataloader,
                                    cp_path.format(self.feats_mode),
                                    self.feats_mode)

            feats_df = self.centroids_loc.assign(desc=feats_sp)
            self.logger.info('Saving  features to {}.'.format(
                df_path.format(self.feats_mode)))
            feats_df.to_pickle(os.path.join(df_path.format(self.feats_mode)))
Example #24
0
def test_rotation(opt):
    result_dir = os.path.join(args.path, args.code_name,
                              "result+" + "-".join(opt.model_prefix_list))
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)
    # Load
    assert len(opt.model_prefix_list) <= torch.cuda.device_count(), \
        "number of models should not exceed the device numbers"
    nets = []
    for _, prefix in enumerate(opt.model_prefix_list):
        net = model.SSD(cfg,
                        connect_loc_to_conf=True,
                        fix_size=False,
                        incep_conf=True,
                        incep_loc=True)
        device_id = opt.device_id if len(opt.model_prefix_list) == 1 else _
        net = net.to("cuda:%d" % (device_id))
        net_dict = net.state_dict()
        weight_dict = util.load_latest_model(args,
                                             net,
                                             prefix=prefix,
                                             return_state_dict=True,
                                             nth=opt.nth_best_model)
        loading_fail_signal = False
        for i, key in enumerate(net_dict.keys()):
            if "module." + key not in weight_dict:
                net_dict[key] = torch.zeros(net_dict[key].shape)
        for key in weight_dict.keys():
            if key[7:] in net_dict:
                if net_dict[key[7:]].shape == weight_dict[key].shape:
                    net_dict[key[7:]] = weight_dict[key]
                else:
                    print(
                        "Key: %s from disk has shape %s copy to the model with shape %s"
                        % (key[7:], str(weight_dict[key].shape),
                           str(net_dict[key[7:]].shape)))
                    loading_fail_signal = True
            else:
                print("Key: %s does not exist in net_dict" % (key[7:]))
        if loading_fail_signal:
            raise RuntimeError(
                'Shape Error happens, remove "%s" from your -mpl settings.' %
                (prefix))

        net.load_state_dict(net_dict)
        net.eval()
        nets.append(net)
        print("Above model loaded with out a problem")
    detector = model.Detect(num_classes=2,
                            bkg_label=0,
                            top_k=opt.detector_top_k,
                            conf_thresh=opt.detector_conf_threshold,
                            nms_thresh=opt.detector_nms_threshold)

    # Enumerate test folder
    root_path = os.path.expanduser(opt.test_dataset_root)
    if not os.path.exists(root_path):
        raise FileNotFoundError(
            "%s does not exists, please check your -tdr/--test_dataset_root settings"
            % (root_path))
    img_list = glob.glob(root_path + "/*.%s" % (opt.extension))
    precisions, recalls = [], []
    for i, img_file in enumerate(sorted(img_list)):
        start = time.time()
        name = img_file[img_file.rfind("/") + 1:-4]
        img = cv2.imread(img_file)
        height_ori, width_ori = img.shape[0], img.shape[1]

        # detect rotation for returning the image back
        img, transform_det = estimate_angle(img, args, None, None, None)
        transform_det["rotation"] = 0
        if transform_det["rotation"] != 0:
            rot_aug = augmenters.Affine(rotate=transform_det["rotation"],
                                        cval=args.aug_bg_color)
        else:
            rot_aug = None

        # Perform Augmentation
        if rot_aug:
            rot_aug = augmenters.Sequential(
                augmenters.Affine(rotate=transform_det["rotation"],
                                  cval=args.aug_bg_color))
            image = rot_aug.augment_image(img)
        else:
            image = img
        # Resize the longer side to a certain length
        if height_ori >= width_ori:
            resize_aug = augmenters.Sequential([
                augmenters.Resize(size={
                    "height": square,
                    "width": "keep-aspect-ratio"
                })
            ])
        else:
            resize_aug = augmenters.Sequential([
                augmenters.Resize(size={
                    "height": "keep-aspect-ratio",
                    "width": square
                })
            ])
        resize_aug = resize_aug.to_deterministic()
        image = resize_aug.augment_image(image)
        h_re, w_re = image.shape[0], image.shape[1]
        # Pad the image into a square image
        pad_aug = augmenters.Sequential(
            augmenters.PadToFixedSize(width=square,
                                      height=square,
                                      pad_cval=255,
                                      position="center"))
        pad_aug = pad_aug.to_deterministic()
        image = pad_aug.augment_image(image)
        h_final, w_final = image.shape[0], image.shape[1]

        # Prepare image tensor and test
        image_t = torch.Tensor(util.normalize_image(args, image)).unsqueeze(0)
        image_t = image_t.permute(0, 3, 1, 2)
        #visualize_bbox(args, cfg, image, [torch.Tensor(rot_coord).cuda()], net.prior, height_final/width_final)

        text_boxes = []
        for _, net in enumerate(nets):
            device_id = opt.device_id if len(nets) == 1 else _
            image_t = image_t.to("cuda:%d" % (device_id))
            out = net(image_t, is_train=False)
            loc_data, conf_data, prior_data = out
            prior_data = prior_data.to("cuda:%d" % (device_id))
            det_result = detector(loc_data, conf_data, prior_data)
            # Extract the predicted bboxes
            idx = det_result.data[0, 1, :, 0] >= 0.1
            text_boxes.append(det_result.data[0, 1, idx, 1:])
        text_boxes = torch.cat(text_boxes, dim=0)
        text_boxes = combine_boxes(text_boxes, img=image_t)
        pred = [[float(coor) for coor in area] for area in text_boxes]
        BBox = [
            imgaug.imgaug.BoundingBox(box[0] * w_final, box[1] * h_final,
                                      box[2] * w_final, box[3] * h_final)
            for box in pred
        ]
        BBoxes = imgaug.imgaug.BoundingBoxesOnImage(BBox, shape=image.shape)
        return_aug = augment_back(transform_det, height_ori, width_ori,
                                  (h_final - h_re) / 2, (w_final - w_re) / 2)
        return_aug = return_aug.to_deterministic()
        img_ori = return_aug.augment_image(image)
        bbox = return_aug.augment_bounding_boxes([BBoxes])[0]
        #print_box(blue_boxes=pred, idx=i, img=vb.plot_tensor(args, image_t, margin=0),
        #save_dir=args.val_log)

        f = open(os.path.join(result_dir, name + ".txt"), "w")

        import researches.ocr.textbox.tb_data as tb_data
        gt_box_file = os.path.join(opt.test_dataset_root,
                                   name + "." + opt.ground_truth_extension)
        coords = tb_data.parse_file(os.path.expanduser(gt_box_file))
        gt_coords = []
        for coord in coords:
            x1, x2 = min(coord[::2]), max(coord[::2])
            y1, y2 = min(coord[1::2]), max(coord[1::2])
            gt_coords.append([x1, y1, x2, y2])
        pred_final = []
        for box in bbox.bounding_boxes:
            x1, y1, x2, y2 = int(round(box.x1)), int(round(box.y1)), int(
                round(box.x2)), int(round(box.y2))
            pred_final.append([x1, y1, x2, y2])
            #box_tensors.append(torch.tensor([x1, y1, x2, y2]))
            # 4-point to 8-point: x1, y1, x2, y1, x2, y2, x1, y2
            f.write("%d,%d,%d,%d,%d,%d,%d,%d\n" %
                    (x1, y1, x2, y1, x2, y2, x1, y2))
            cv2.rectangle(img, (x1, y1), (x2, y2), (255, 105, 65), 2)
        accu, precision, recall = measure(torch.Tensor(pred_final).cuda(),
                                          torch.Tensor(gt_coords).cuda(),
                                          width=img.shape[1],
                                          height=img.shape[0])
        precisions.append(precision)
        recalls.append(recall)
        img_save_directory = os.path.join(
            args.path, args.code_name,
            "val+" + "-".join(opt.model_prefix_list))
        if not os.path.exists(img_save_directory):
            os.mkdir(img_save_directory)
        cv2.imwrite(os.path.join(img_save_directory, name + ".jpg"), img)
        f.close()
        print("%d th image cost %.2f seconds" % (i, time.time() - start))
    print("Precision: %.2f, Recall: %.2f" % (avg(precisions), avg(recalls)))
    os.chdir(
        os.path.join(args.path, args.code_name,
                     "result+" + "-".join(opt.model_prefix_list)))
    os.system(
        "zip result_%s.zip ~/Pictures/dataset/ocr/_text_detection/result+%s/*.txt"
        % ("val+" + "-".join(opt.model_prefix_list), "-".join(
            opt.model_prefix_list)))
Example #25
0
def main():
    parser = argparse.ArgumentParser(description="Check augmenters visually.")
    parser.add_argument(
        '--only',
        default=None,
        help=
        "If this is set, then only the results of an augmenter with this name will be shown.",
        required=False)
    args = parser.parse_args()

    images = [
        misc.imresize(
            ndimage.imread("../quokka.jpg")[0:643, 0:643], (128, 128)),
        misc.imresize(data.astronaut(), (128, 128))
    ]

    augmenters = [
        iaa.Noop(name="Noop"),
        iaa.OneOf(children=[
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                  name="OneOf"),
        iaa.Crop(px=(0, 8), name="Crop-px"),
        iaa.Crop(percent=(0, 0.1), name="Crop-percent"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"),
        iaa.Grayscale(0.5, name="Grayscale0.5"),
        iaa.Grayscale(1.0, name="Grayscale1.0"),
        iaa.AverageBlur(k=(3, 11), name="AverageBlur"),
        iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
        iaa.MedianBlur(k=(3, 11), name="MedianBlur"),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0, 2.0), name="Sharpen"),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0),
                               direction=(0, 1.0),
                               name="DirectedEdgeDetect"),
        iaa.AdditiveGaussianNoise(loc=0,
                                  scale=(0.0, 0.1 * 255),
                                  name="AdditiveGaussianNoise"),
        iaa.Dropout((0.0, 0.1), name="Dropout"),
        iaa.CoarseDropout(p=0.05,
                          size_percent=(0.05, 0.5),
                          name="CoarseDropout"),
        iaa.Invert(p=0.5, name="Invert"),
        iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"),
        iaa.Add((-50, 50), name="Add"),
        iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"),
        iaa.AddElementwise((-50, 50), name="AddElementwise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.ContrastNormalization(alpha=(0.5, 2.0),
                                  name="ContrastNormalization"),
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_px={
                       "x": (-16, 16),
                       "y": (-16, 16)
                   },
                   rotate=(-45, 45),
                   shear=(-16, 16),
                   order=ia.ALL,
                   cval=(0, 255),
                   mode=ia.ALL,
                   name="Affine"),
        iaa.PiecewiseAffine(scale=0.03,
                            nb_rows=(2, 6),
                            nb_cols=(2, 6),
                            name="PiecewiseAffine"),
        iaa.ElasticTransformation(alpha=(0.5, 8.0),
                                  sigma=1.0,
                                  name="ElasticTransformation")
    ]

    augmenters.append(
        iaa.Sequential([iaa.Sometimes(0.2, aug.copy()) for aug in augmenters],
                       name="Sequential"))
    augmenters.append(
        iaa.Sometimes(0.5, [aug.copy() for aug in augmenters],
                      name="Sometimes"))

    for augmenter in augmenters:
        if args.only is None or augmenter.name == args.only:
            print("Augmenter: %s" % (augmenter.name, ))
            grid = augmenter.draw_grid(images, rows=1, cols=16)
            misc.imshow(grid)
Example #26
0
def train_deploy(dataset_location='classification/sample_data/imgs_recycling',
                 dataset_name='recycling', do_augmentations=False,
                 deployment_name="testdeployment", azureml_rscgroup=None, azureml_cluster_name=None):
    """
      a sample pipeline for deploying themodel that is trained on a dataset.

      loads a dataset, optionally does some augmentations, creates and trains a
      model using transfer learning based on ResNet18, deploys the trained model
      on the specified Azure ML cluster or picks up the one set using the CLI.
      and returns the Scoring URL.

      Args:
        dataset_location: path to a dataset.  there should be a top level folder
          containing folders for each class.  see the sample recycling dataset for
          an example of the format
        dataset_name: the of the dataset.  will be used in the dataset
          management functionality
        do_augmentations: boolean.  specifies whether augmentations should be
          applied to the test set
        deployment_name: the deployment of the deployment. Will be used in deployment 
          management facility
        azureml_rscgroup: Azure ML resource group name of the model management account.
           If not set, default value will be picked up if set from CLI
        azureml_cluster_name: Azure ML cluster name where the model is deployed. If not set, 
           default value will be picked up if set from CLI.

      Returns:
        the scoring API URL of the deployment
    """
    # if we're not running inside AML WB, set up the share directory
    if 'AZUREML_NATIVE_SHARE_DIRECTORY' not in os.environ:
        os.environ['AZUREML_NATIVE_SHARE_DIRECTORY'] = './share'
    context = Context.get_global_context()

    # create a dataset from a directory with folders representing different classes
    dataset = ClassificationDataset.create_from_dir(dataset_name, dataset_location)

    # print out some info about the dataset
    dataset.print_info()

    # optionally augment images by cropping and rotating
    if do_augmentations:
        # here we create two pipelines for doing augmentations.  the first
        # will rotate each image by between -45 and 45 degrees (the angle is
        # chosen at random).  then the rotated images will be flipped from left
        # to right with probability .5.  the second pipeline will randomly crop
        # images by between 0 and 10 percent.  each pipeline will be applied to
        # the original dataset.  the resulting dataset will three times as many
        # images as the original - the original dataset, the dataset after
        # augmentation by the rotate_and_flip pipeline, and the dataset
        # after augmentation by the crop pipeline
        rotate_and_flip = augmenters.Sequential([
            augmenters.Affine(rotate=(-45, 45)),
            augmenters.Fliplr(.5)])

        crop = augmenters.Sequential([augmenters.Crop(percent=(0, .1))])

        train_set = augment_dataset(dataset, [rotate_and_flip, crop])
    else:
        train_set = dataset

    # now create the model
    base_model_name = 'ResNet18_ImageNet_CNTK'
    model = CNTKTLModel(train_set.labels,
                        base_model_name = base_model_name,
                        output_path='.')

    # train the model using cntk
    model.train(train_set)
    print("Model state:", model.model_state)

    # check if the deployment exists, if yes remove it first
    AMLDeployment.delete_if_service_exist(deployment_name)

    #deploy the trained model
    deploy_obj = AMLDeployment(
            deployment_name=deployment_name, associated_DNNModel=model, aml_env = "cluster", replicas=1)
    deploy_obj.deploy()

    return deploy_obj.service_url
def padding_seq(pad_size, pad_method):
    seq = iaa.Sequential([PadFixed(pad=pad_size, pad_method=pad_method),
                          ]).to_deterministic()
    return seq
img=plt.imread('bird.jpg')




seq = iaa.Sequential([
    iaa.Fliplr(p=0),# basically this is original one
    iaa.Crop(px=(22, 45),keep_size=False), # crop images from each side by 0 to 16px (randomly chosen)
    iaa.Fliplr(1), # horizontally flip 50% of the images
    iaa.GaussianBlur(sigma=(5, 7.0)), # blur images with a sigma of 0 to 3.0
    iaa.ImpulseNoise(p=(0.6,1)),
    iaa.EdgeDetect(alpha=(0.9,1)),
    #iaa.AddToBrightness(add=(100,124)),
    iaa.Canny(alpha=(0.8,0.9)),
    iaa.Grayscale(alpha=1.00),
    iaa.ChannelShuffle(p=1),
    iaa.geometric.Affine( scale=2,rotate=22, backend='cv2'),
    iaa.Cartoon(blur_ksize=(11,13)),
    iaa.CenterCropToAspectRatio(1),
    iaa.CenterCropToFixedSize(100,100),
    iaa.ChangeColorTemperature(kelvin=(2222,3333)),
    #iaa.segmentation(),
    iaa.CLAHE(clip_limit=(4,8)),
    iaa.Rotate(rotate=(-30,90))
])

plt.figure(figsize=(12,12))

for idx,Augmentor in enumerate(seq):
    # print(1)
    ax=plt.subplot(4,4,idx+1)
Example #29
0
    def __init__(self, images, config, shuffle=True, jitter=True, norm=None):
        self.generator = None

        self.images = images
        self.config = config

        self.shuffle = shuffle
        self.jitter = jitter
        self.norm = norm

        self.anchors = [
            BoundBox(0, 0, config['ANCHORS'][2 * i],
                     config['ANCHORS'][2 * i + 1])
            for i in range(int(len(config['ANCHORS']) // 2))
        ]

        ### augmentors by https://github.com/aleju/imgaug
        sometimes = lambda aug: iaa.Sometimes(0.1, aug)

        # Define our sequence of augmentation steps that will be applied to every image
        # All augmenters with per_channel=0.5 will sample one value _per image_
        # in 50% of all cases. In all other cases they will sample new values
        # _per channel_.
        self.aug_pipe = iaa.Sequential(
            [
                #sometimes(iaa.Add((-50, 10))), # change brightness of images (by -10 to 10 of original value)
                sometimes(
                    iaa.Multiply((0.3, 0.8))
                ),  # change brightness of images (50-150% of original value)
                sometimes(iaa.ContrastNormalization((0.3, 1.0))),
                #sometimes(
                #    iaa.Affine(
                #    scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #    translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #    rotate=(-5, 5), # rotate by -45 to +45 degrees
                #    shear=(-5, 5), # shear by -16 to +16 degrees
                #    order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #    cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #    mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
                #)),
                # execute 0 to 5 of the following (less important) augmenters per image
                # don't execute all of them, as that would often be way too strong
                iaa.SomeOf(
                    (0, 5),
                    [
                        iaa.OneOf([
                            #iaa.Flipud(0.5), # vertically flip 20% of all images
                            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
                            iaa.GaussianBlur(
                                (0, 3.0)
                            ),  # blur images with a sigma between 0 and 3.0
                            iaa.MedianBlur(
                                k=(3, 11)
                            ),  # blur image using local medians with kernel sizes between 2 and 7
                            #iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                            #iaa.Superpixels(p_replace=(0, 1.0), n_segments=(75, 200)), # convert images into their superpixel representation
                        ]),
                        #iaa.Invert(0.05, per_channel=True), # invert color channels
                        #iaa.Add((-10, 10), per_channel=0.5),
                        #iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                        #iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                        #iaa.Grayscale(alpha=(0.0, 1.0)),
                        #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                        #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                    ],
                    random_order=True)
            ],
            random_order=True)

        if shuffle: np.random.shuffle(self.images)
Example #30
0
    def __init__(self,
                 data_root,
                 image_shape=None,
                 min_shape=None,
                 val_mode=None,
                 plus1=True,
                 isTrain=True):
        '''
        We assume that image_shape is always an even number.
        With plus1 = True, we'll modify image_shape to odd.
        '''
        self.data_root = data_root
        if isTrain:
            assert image_shape is not None
            self.image_shape = image_shape
        else:
            assert min_shape is not None
            self.image_shape = (min_shape, min_shape)
        self.isTrain = isTrain
        self.val_mode = val_mode
        if plus1:
            self.image_shape = (image_shape[0] + 1, image_shape[1] + 1)
        if isTrain:
            bg_set_fn = [
                i.strip()
                for i in open(os.path.join(data_root, 'bg_train_set.txt'), 'r')
            ]
            fg_set = [
                i.strip() for i in open(
                    os.path.join(data_root, 'fg_train_set_old.txt'), 'r')
            ]
            fg_set_fn = [None] * len(bg_set_fn)
            for i in range(len(bg_set_fn)):
                fg_set_fn[i] = fg_set[i // 100]
        else:
            bg_set_fn = [
                i.strip()
                for i in open(os.path.join(data_root, 'bg_val_set.txt'), 'r')
            ]  #[60:]
            fg_set_fn = [
                i.strip()
                for i in open(os.path.join(data_root, 'fg_val_set.txt'), 'r')
            ]  #[60:]

        self.dataset_length = len(bg_set_fn)
        assert len(fg_set_fn) == self.dataset_length
        #ratio = self.dataset_length // len(fg_set_fn)
        self.sample_fn = [None] * self.dataset_length
        for i in range(self.dataset_length):
            _fn = fg_set_fn[i].split(' ')
            self.sample_fn[i] = (_fn[0], _fn[1], bg_set_fn[i])

        # apply to fg, bg
        self.flip_and_color_aug = iaa.Sequential([
            iaa.MultiplyHueAndSaturation(mul=iap.TruncatedNormal(
                1.0, 0.2, 0.5, 1.5)),  # mean, std, low, high
            iaa.GammaContrast(gamma=iap.TruncatedNormal(1.0, 0.2, 0.5, 1.5)),
            iaa.AddToHue(value=iap.TruncatedNormal(0.0, 0.1 * 100, -0.2 *
                                                   255, 0.2 * 255))
        ])

        if isTrain:
            self.min_shape = min_shape
            self.preshape_aug = iaa.Sequential([
                iaa.CropToFixedSize(width=self.min_shape, height=self.min_shape, \
                    position='uniform' if isTrain else 'center'),
            ])
        else:
            assert self.val_mode in ['gca', 'dim', 'origin', 'resize']
            if self.val_mode == 'resize':
                assert min_shape is not None
                self.min_shape = min_shape
            elif self.val_mode == 'origin':
                print('Warning: val_mode == origin, change min_shape to 2112')
                self.min_shape = 2112
                self.image_shape = (2112, 2112)

        self.shape_aug = iaa.Sequential([
            iaa.Fliplr(0.5),
            iaa.OneOf([
                # iaa.CropToFixedSize(width=384, height=384),
                # iaa.CropToFixedSize(width=448, height=448),
                iaa.CropToFixedSize(width=512, height=512),
                iaa.CropToFixedSize(width=576, height=576),
                iaa.CropToFixedSize(width=640, height=640),
                iaa.CropToFixedSize(width=704, height=704),
                iaa.CropToFixedSize(width=768, height=768)
            ]),
        ]) if isTrain else \
            iaa.Sequential([
                iaa.CropToFixedSize(width=self.image_shape[1], \
                    height=self.image_shape[0], \
                    position='uniform' if isTrain else 'center'),
            ])