Example #1
0
 def load_images(self, ids: List[int]) -> Tensor:
     """
     Returns:
         (l, c, w, h) Tensor:
             Tensor of images.
     """
     images: List[Tensor] = [
         imread(self.frame_template.format(i)) for i in ids
     ]
     # Using deterministic parameters to apply exactly
     # the same augmentations to all images in the sequence.
     if self.augment:
         augmenter = Sequential([
             LinearContrast(Deterministic(Uniform(0.7, 1.3))),
             Multiply(
                 Deterministic(Uniform(0.7, 1.3)),
                 per_channel=Deterministic(DiscreteUniform(0, 1)),
             ),
             Sometimes(
                 Deterministic(DiscreteUniform(0, 1)),
                 GaussianBlur(sigma=Deterministic(Uniform(0, 0.7))),
             ),
         ],
                                random_order=True)
         images = augmenter(images=images)
     for i in range(len(images)):
         image = images[i].astype("float32") / 255
         images[i] = tensor(image).permute(2, 0, 1).unsqueeze_(0)
     return cat(images, dim=0)
Example #2
0
    def prepare_augmentation_pipeline(self, config):
        from imgaug.parameters import DiscreteUniform
        br_change = config['trn']['brightness_augmentation_amount']  # (was 70)
        contrast_min = config['trn']['augmentation_contrast_min']
        contrast_max = config['trn']['augmentation_contrast_max']
        rotation = config['trn']['augmentation_rotation']
        if rotation == 'uniform':
            rotation = DiscreteUniform(0, 360)
        translation = config['trn']['augmentation_translation']
        scale_min = config['trn']['augmentation_scale_min']
        scale_max = config['trn']['augmentation_scale_max']
        shear = config['trn']['augmentation_shear']

        from imgaug import augmenters as iaa
        return iaa.Sequential(
            [
                iaa.Add(
                    (-br_change, br_change), per_channel=False
                ),  # change brightness of images (by -10 to 10 of original value)
                iaa.contrast.LinearContrast(
                    (contrast_min, contrast_max),
                    per_channel=False),  # improve or worsen the contrast
                iaa.Affine(rotate=rotation,
                           translate_percent={
                               "x": (-translation, translation),
                               'y': (-translation, translation)
                           },
                           scale=(scale_min, scale_max),
                           shear=(-shear, shear),
                           cval=128),
                iaa.Fliplr(p=0.5)
            ],
            random_order=True)
Example #3
0
    def _draw_sample_point(self, box_w, box_h, img_w, img_h, seed):
        x1 = math.ceil(box_w / 2)
        y1 = math.ceil(box_h / 2)
        x2 = math.floor(img_w - x1)
        y2 = math.floor(img_h - y1)

        random_state = ia.new_random_state(seed)
        x = DiscreteUniform(x1, x2)
        y = DiscreteUniform(y1, y2)

        center_x = x.draw_sample(random_state=random_state)
        center_y = y.draw_sample(random_state=random_state)

        return center_x, center_y
Example #4
0
def main():
    params = [
        ("Binomial(0.1)", Binomial(0.1)),
        ("Choice", Choice([0, 1, 2])),
        ("Choice with p", Choice([0, 1, 2], p=[0.1, 0.2, 0.7])),
        ("DiscreteUniform(0, 10)", DiscreteUniform(0, 10)),
        ("Poisson(0)", Poisson(0)),
        ("Poisson(5)", Poisson(5)),
        ("Discretize(Poisson(5))", Discretize(Poisson(5))),
        ("Normal(0, 1)", Normal(0, 1)),
        ("Normal(1, 1)", Normal(1, 1)),
        ("Normal(1, 2)", Normal(0, 2)),
        ("Normal(Choice([-1, 1]), 2)", Normal(Choice([-1, 1]), 2)),
        ("Discretize(Normal(0, 1.0))", Discretize(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0))", Positive(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0), mode='reroll')", Positive(Normal(0, 1.0), mode="reroll")),
        ("Negative(Normal(0, 1.0))", Negative(Normal(0, 1.0))),
        ("Negative(Normal(0, 1.0), mode='reroll')", Negative(Normal(0, 1.0), mode="reroll")),
        ("Laplace(0, 1.0)", Laplace(0, 1.0)),
        ("Laplace(1.0, 3.0)", Laplace(1.0, 3.0)),
        ("Laplace([-1.0, 1.0], 1.0)", Laplace([-1.0, 1.0], 1.0)),
        ("ChiSquare(1)", ChiSquare(1)),
        ("ChiSquare([1, 6])", ChiSquare([1, 6])),
        ("Weibull(0.5)", Weibull(0.5)),
        ("Weibull((1.0, 3.0))", Weibull((1.0, 3.0))),
        ("Uniform(0, 10)", Uniform(0, 10)),
        ("Beta(0.5, 0.5)", Beta(0.5, 0.5)),
        ("Deterministic(1)", Deterministic(1)),
        ("Clip(Normal(0, 1), 0, None)", Clip(Normal(0, 1), minval=0, maxval=None)),
        ("Multiply(Uniform(0, 10), 2)", Multiply(Uniform(0, 10), 2)),
        ("Add(Uniform(0, 10), 5)", Add(Uniform(0, 10), 5)),
        ("Absolute(Normal(0, 1))", Absolute(Normal(0, 1))),
        ("RandomSign(Poisson(1))", RandomSign(Poisson(1))),
        ("RandomSign(Poisson(1), 0.9)", RandomSign(Poisson(1), 0.9))
    ]

    params_arithmetic = [
        ("Normal(0, 1.0)", Normal(0.0, 1.0)),
        ("Normal(0, 1.0) + 5", Normal(0.0, 1.0) + 5),
        ("Normal(0, 1.0) * 10", Normal(0.0, 1.0) * 10),
        ("Normal(0, 1.0) / 10", Normal(0.0, 1.0) / 10),
        ("Normal(0, 1.0) ** 2", Normal(0.0, 1.0) ** 2)
    ]

    params_noise = [
        ("SimplexNoise", SimplexNoise()),
        ("Sigmoid(SimplexNoise)", Sigmoid(SimplexNoise())),
        ("SimplexNoise(linear)", SimplexNoise(upscale_method="linear")),
        ("SimplexNoise(nearest)", SimplexNoise(upscale_method="nearest")),
        ("FrequencyNoise((-4, 4))", FrequencyNoise(exponent=(-4, 4))),
        ("FrequencyNoise(-2)", FrequencyNoise(exponent=-2)),
        ("FrequencyNoise(2)", FrequencyNoise(exponent=2))
    ]

    images_params = [param.draw_distribution_graph() for (title, param) in params]
    images_arithmetic = [param.draw_distribution_graph() for (title, param) in params_arithmetic]
    images_noise = [param.draw_distribution_graph(size=(1000, 10, 10)) for (title, param) in params_noise]

    misc.imshow(np.vstack(images_params))
    misc.imshow(np.vstack(images_arithmetic))
    misc.imshow(np.vstack(images_noise))