camera.resolution = (640, 480) camera.framerate = 32 raw_capture = PiRGBArray(camera, size=(640, 480)) raw_array = PiArrayOutput(camera) fd = FaceDetector(args['face']) time.sleep(0.1) scale_factor = input('Enter scale factor: ') min_neighbours = input('Enter minimum neighbours: ') for f in camera.capture_continuous(stream, format='bgr', use_video_port = True): frame = f.array frame = imgtools.resize(frame, width = 300) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face_rects = fd.detect_face(gray, scale_factor, min_neighbours, minSize = (30, 30)) frame_clone = frame.copy() for (x, y, w, h) in face_rects: cv2.rectangle(frame_clone, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('Face', frame_clone) raw_capture.truncate(0) if cv2.waitKey(1) & 0xFF == ord('q'): break
camera.resolution = (640, 480) camera.framerate = 32 raw_capture = PiRGBArray(camera, size=(640, 480)) raw_array = PiArrayOutput(camera) fd = FaceDetector(args['face']) time.sleep(0.1) scale_factor = input('Enter scale factor: ') min_neighbours = input('Enter minimum neighbours: ') for f in camera.capture_continuous(stream, format='bgr', use_video_port=True): frame = f.array frame = imgtools.resize(frame, width=300) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face_rects = fd.detect_face(gray, scale_factor, min_neighbours, minSize=(30, 30)) frame_clone = frame.copy() for (x, y, w, h) in face_rects: cv2.rectangle(frame_clone, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('Face', frame_clone) raw_capture.truncate(0) if cv2.waitKey(1) & 0xFF == ord('q'):
from __future__ import print_function from detectors.face import FaceDetector from imgtools import imgtools import argparse import cv2 ap = argparse.ArgumentParser() ap.add_argument('-f', '--face', required=True, help='path to face cascade') ap.add_argument('-i', '--image', required=True, help='path to image') args = vars(ap.parse_args()) image = cv2.imread(args['image']) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) fd = FaceDetector(args['face']) scale_factor = input('Enter scale factor: ') min_neighbours = input('Enter minimum neighbours: ') face_rects = fd.detect_face(gray, scale_factor, min_neighbours, minSize=(30, 30)) print('{} face(s) detected'.format(len(face_rects))) for (x, y, w, h) in face_rects: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) resized = imgtools.resize(image, height=500) cv2.imshow('Faces', resized) cv2.waitKey(0)
from __future__ import print_function from detectors.face import FaceDetector from imgtools import imgtools import argparse import cv2 ap = argparse.ArgumentParser() ap.add_argument('-f', '--face', required = True, help = 'path to face cascade') ap.add_argument('-i', '--image', required = True, help = 'path to image') args = vars(ap.parse_args()) image = cv2.imread(args['image']) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) fd = FaceDetector(args['face']) scale_factor = input('Enter scale factor: ') min_neighbours = input('Enter minimum neighbours: ') face_rects = fd.detect_face(gray, scale_factor, min_neighbours, minSize= (30, 30)) print('{} face(s) detected'.format(len(face_rects))) for (x,y,w,h) in face_rects: cv2.rectangle(image, (x,y), (x+w, y+h), (0, 255, 0), 2) resized = imgtools.resize(image, height = 500) cv2.imshow('Faces', resized) cv2.waitKey(0)