def RestoreStatements2(loop, cl, n, vars): loop_str = [] for line in loop: if line.endswith(');'): tab = imperf_tile.get_tab(line) line = line.replace(' ', '') line = line[:-2] line = line[1:] arr = line.split(',') petit_st = arr[4 * n] s = '' for i in range(0, len(cl.statements)): if (cl.statements[i].petit_line == int(petit_st) ): # st.petit_line s = cl.statements[i].body for i in range( 0, len(vars) ): # todo oryginal iterators for loops with mixed indexes subt = arr[2 * n + 2 * i + 1] if (('+' in subt) or ('-' in subt)): subt = '(' + subt + ')' s = re.sub(r'\b' + vars[i] + r'\b', subt, s) loop_str.append(tab + s) else: line = line.replace('for (int', 'for(') loop_str.append(line) loop_str = '\n'.join(loop_str) return loop_str
print '-------------' S1 = 'S[i][j] = max(S[i][k+i] + S[k+i+1][j], S[i][j]);' S2 = 'S[i][j] = max(S[i][j], S[i+1][j-1] + can_par(RNA, i, j));' #S1 = 'S[i][j] = S[i][k+i] + S[k+i+1][j]+ S[i][j];' #S2 = 'S[i][j] = S[i][j]+ S[i+1][j-1];' lines = loop_x.split('\n') loop = [] for line in lines: if line.endswith(');'): tab = imperf_tile.get_tab(line) line = line.replace(' ', '') line = line[:-2] line = line[1:] arr = line.split(',') if (arr[12] == '1'): s = S1 else: s = S2 irep = arr[7] jrep = arr[9] krep = arr[11]
def fs_new(rel, rel_plus, rtile, LPetit, dane, plik, SIMPLIFY, rap, exact, isl_TILEbis, sym_exvars, maxl, step, isl_tilevld, vars): codegen = 'isl' # compute rtile_plus # podmien exact, rel na tile, rel_plus na rtile_plus #wq = rtile.transitive_closure()[0] #print wp.subtract(wq).coalesce() #print wq.subtract(wp).coalesce() if (exact): print 'R+ exact!' else: print 'R+ approximated. Iterate way...!' r0p_plus = relation_util.oc_IterateClosure(rel) rel_plus = r0p_plus isl_relclosure = rel_plus isl_ident = rel.identity(rel.get_space()) isl_relclosure = isl_relclosure.union( isl_ident).coalesce() # R* = R+ u I print 'Checking (the Pugh method)' # R = R compose RINV if (rel_plus.subtract( rel_plus.apply_range(rel).union(rel)).coalesce().is_empty()): print ' .... OK !!' else: print 'R+ failed.' sys.exit(0) #file = open('lu_rplus.txt', 'r') #isl_relclosure = isl.Map(file.read()) #print isl_relclosure wp = GetRTilePlus(rel_plus, isl_tilevld, sym_exvars, vars).coalesce() rel = rtile rel_plus = wp print '## R' print rel print '## R+' print wp rel = rel.subtract(rel_plus.apply_range(rel)) print '### R = R - R+ compose R' print rel global_size = rel.dim(isl.dim_type.in_) UDS = rel.domain().subtract(rel.range()).coalesce() UDD = rel.range().subtract(rel.domain()).coalesce() DOM_RAN = rel.range().union(rel.domain()).coalesce() cl = clanpy.ClanPy() cl.loop_path = plik cl.Load() cl.RunCandl() IS = DOM_RAN for i in range(0, len(cl.statements)): IS_ = isl.Set(cl.statements[i].domain_map).coalesce() print IS_ set_size = IS_.dim(isl.dim_type.set) for j in range(set_size, global_size - 1): IS_ = IS_.insert_dims(isl.dim_type.set, j, 1) IS_ = IS_.set_dim_name(isl.dim_type.set, j, 'i' + str(j)) c = isl.Constraint.eq_from_names( IS_.get_space(), { IS_.get_dim_name(isl.dim_type.set, j): -1, 1: -1 }) IS_ = IS_.add_constraint(c).coalesce() set_size = IS_.dim(isl.dim_type.set) IS_ = IS_.insert_dims(isl.dim_type.set, set_size, 1) IS_ = IS_.set_dim_name(isl.dim_type.set, set_size, "v") #print cl.statements[i].body c = isl.Constraint.eq_from_names(IS_.get_space(), { "v": -1, 1: int(dane[i]) }) IS_ = IS_.add_constraint(c).coalesce() if i == 0: IS = IS_ else: IS = IS.union(IS_).coalesce() print "IS" print IS IND = IS.subtract(DOM_RAN).coalesce() print "IND" print IND n = rel.dim(isl.dim_type.in_) inp = [] outp = [] for i in range(0, n): inp.append("i" + str(i)) outp.append("o" + str(i)) # Rlex rlex = "{[" + ",".join(inp) + "] -> [" + ",".join( outp) + "] : " + tiling_v3.CreateLex(outp, inp) + "}" rlex = isl.Map(rlex) rip = rel_plus.fixed_power_val(-1) re_rel = isl.Map.from_domain_and_range(IS, IS) #print re print "### RE" re_rel = re_rel.intersect(rlex.subtract(rel_plus).subtract(rip)).coalesce() print re_rel # oblicz Re1 #Re1 = GetRe1(re_rel, rel_plus) #print "### RE2" #re_rel = re_rel.subtract(Re1).coalesce() #print re_rel re2 = re_rel W = re_rel.domain().union(re_rel.range()).coalesce() D = re_rel.domain().subtract(re_rel.range()).coalesce() rel_inv = rel.fixed_power_val(-1) print "R^-1" print rel_inv # R = R compose RINV #RR = rel.apply_range(rel_inv) RR = rel_inv.apply_range(rel) # ------ Jesli RCHECK ---------- if (1 == 0): RRR1 = rel.fixed_power_val(2) RRR2 = rel_inv.fixed_power_val(2) RRR = RRR1.union(RRR2).coalesce() RR = RR.union(RRR).coalesce() # ------------------------------ RR = RR.intersect(rlex).coalesce() print "### RR" print RR IND_lexmin = IND.lexmin() IND0ToIND = isl.Map.from_domain_and_range(IND_lexmin, IND).coalesce() RRPLUS = RR.transitive_closure() RR_EXACT = RRPLUS[1] RRPLUS = RRPLUS[0] if not RR_EXACT: print 'RR+ not exact' #sys.exit(0) # sprawdz dokladnosc R2 = GetR2(re_rel, RRPLUS) print '### RRPLUS' print RRPLUS print '### R2' R2 = R2.coalesce() print R2 RRstar = RRPLUS RR_ident = RR.identity(RR.get_space()) RRstar = RRstar.union(RR_ident).coalesce() # R* = R+ u I print "### Rstar" print RRstar REPR = D.union(DOM_RAN.subtract(W)).coalesce() # poprawka REPR = R2.domain().subtract(R2.range()).coalesce() print '#REPR1' print REPR tmp = REPR.apply(RRstar).coalesce() REPR2 = DOM_RAN.subtract(tmp).coalesce() print '#REPR2' print REPR2 REPR = REPR.union(REPR2).coalesce() REPR = imperf_tile.SimplifySlice(REPR) ##### #REPR1:= domain RE2 - range RE2; #REPR2:= (domain R union R) -RR * (REPR1); #REPR = REPR.intersect(IS) print "### REPR" print REPR if (1 == 0): Rtmp = REPR.polyhedral_hull() if (Rtmp.subtract(REPR).coalesce().is_empty() and REPR.subtract(Rtmp).coalesce().is_empty()): print "upraszczanie" REPR = Rtmp R1 = RRstar.intersect_domain(REPR.coalesce()) # R1 = R1.intersect_range(IS) print 'RSCHED obliczanie :' print R1 print "IND0->IND" print IND0ToIND #print R3 print "i razem" #RSCHED = R1.union(IND0ToIND).coalesce() RSCHED = R1 #upraszczanie if (SIMPLIFY and 1 == 0): Rtmp = RSCHED.polyhedral_hull() if (Rtmp.subtract(RSCHED).coalesce().is_empty() and RSCHED.subtract(Rtmp).coalesce().is_empty()): print "upraszczanie" RSCHED = Rtmp #RSCHED = imperf_tile.SimplifyMap(RSCHED) print "### RSCHED" print RSCHED print "### Check " Check_set = RSCHED.domain().union(RSCHED.range()).coalesce() Check_set = IS.subtract(IND).subtract(Check_set).coalesce() if Check_set.is_empty(): print "OK" else: print "ERROR ! " + str(Check_set) sys.exit(0) # generowanie kodu D = RSCHED.domain() #if(SIMPLIFY): print "# DOMAIN RSCHED" print D D = D.apply(rap) D = imperf_tile.SimplifySlice(D) D = D.coalesce() print rap print D if (codegen == 'barvinok'): looprepr = iscc.iscc_communicate("L :=" + str(D) + "; codegen L;") else: # isl looprepr = iscc.isl_ast_codegen(D) for i in range(0, 20): looprepr = re.sub('\\b' + 'c' + str(i) + '\\b', 't' + str(i), looprepr) print looprepr looprepr = looprepr.split('\n') st_reg = re.compile('\s*\(.*\);') vecs = [] taby = [] for line in looprepr: if (st_reg.match(line)): vecs.append(line) #(isl.Set(iscc.s1_to_vec3(line, len(vecs)))) taby.append(iscc.correct.whites(line)) slices = [] for vec in vecs: #vec = isl.Set("[g1,g2,g3] -> {[g1,g2,g3]}") vec = GetConstraint(vec) slice = vec if (not RSCHED.is_empty()): slice_ = slice.apply(RSCHED) slice = slice.union(slice_).coalesce() slice = slice_ print '-------- IS --------' print IS slice = slice.intersect(IS).coalesce() print slice #if(SIMPLIFY): #slice = imperf_tile.SimplifySlice(slice) # EKSPERIMENTAL CODE wywal z RE instrukcje nie nalezace do RE if (1 == 0): temp = slice.intersect(W).coalesce() if (not temp.is_empty()): slice = temp slice = slice.apply(rap) wlen = len(sym_exvars) slice = slice.insert_dims(isl.dim_type.set, 2 * wlen, wlen * 2) print slice print isl_TILEbis slice = slice.intersect(isl_TILEbis) slices.append(slice.coalesce()) new_loop = [] i = 0 for line in looprepr: if (st_reg.match(line)): #print slices[i] if (codegen == 'barvinok'): petla = iscc.iscc_communicate("L :=" + str(slices[i]) + "; codegen L;") petla = petla.split('\n') else: #isl petla = iscc.isl_ast_codegen(slices[i]).split('\n') petla = correct.Korekta('', petla) # dodaj { } do for was_par = 0 # poprawic jak sie koncza petle i sa nowe for s in petla: if 'for (int c' in s and was_par == 0: new_loop.append(taby[i] + imperf_tile.get_tab(s) + '#pragma omp parallel for') if "{" in s: was_par = 1 new_loop.append(taby[i] + s) if was_par > 0: if "{" in s: was_par = was_par + 1 if "}" in s: was_par = was_par - 1 i = i + 1 else: new_loop.append(line) nloop = "" for line in new_loop: if line != '': # if 'for (int c1' in line: # c0 przy perf, c1 przy imperf # line = imperf_tile.get_tab(line) + "#pragma omp parallel for\n" +line nloop = nloop + line + "\n" nloop = nloop[:-1] nloop = nloop.split('\n') nloop = tiling_v3.postprocess_loop(nloop) lines = nloop.split('\n') loop = imperf_tile.RestoreStatements(lines, LPetit, dane, wlen, 1, []) #loop = imperf_tile.RestoreStatements(lines, LPetit, dane, maxl, step, permutate_list) print "==========================" print "OUTPUT CODE" print loop print UDS print UDS - REPR
def tile(plik, block, permute, output_file="", L="0", SIMPLIFY="False", perfect_mode=False, parallel_option=False, rplus_mode='', cpus=2): print '' print colored('/\__ _\ /\ == \ /\ __ \ /\ ___\ /\ __ \ ', 'green') print colored('\/_/\ \/ \ \ __< \ \ __ \ \ \ \____ \ \ \/\ \ ', 'green') print colored(' \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_____\ \ \_____\ ', 'green') print colored(' \/_/ \/_/ /_/ \/_/\/_/ \/_____/ \/_____/ ', 'green') print '' print ' An Automatic Parallelizer and Optimizer' print 'based on the ' + colored('TRA', 'green') + 'nsitive ' + colored( 'C', 'green') + 'l' + colored('O', 'green') + 'sure of dependence graphs' print ' traco.sourceforge.net ' print '' print 'TIME SPACE TILING Module' LPetit = "tmp/tmp_petit" + L + ".t" BLOCK = block.split(',') BLOCK2 = BLOCK for i in range(len(BLOCK), 10): BLOCK.append(BLOCK[len(BLOCK) - 1]) linestring = open(plik, 'r').read() lines = linestring.split('\n') petit_loop = convert_loop.convert_loop(lines) file = open(LPetit, 'w') imperf = 0 endloop = 0 startloop = 0 for line in petit_loop: #sprawdz przy okazji jaka petla idealnie czy nie if 'for' in line and not 'endfor' in line: if startloop == 2: imperf = 1 startloop = 1 else: if startloop == 1: startloop = 2 if 'endfor' in line: endloop = 1 if endloop == 1 and 'endfor' not in line and not line.isspace( ) and line != '': imperf = 1 file.write(line + '\n') file.close() start = time.time() loop = Dependence.Kernel_Loop(LPetit, 1) loop.Load_Deps() loop.Load_instrukcje() loop.PreprocessPet() loop.Get_Arrays() end = time.time() elapsed = end - start print "Dependence analysis: time taken: ", elapsed, "seconds." print colored('R', 'green') print loop.isl_rel isl_symb = loop.Deps[0].Relation.get_var_names(isl.dim_type.param) symb_prefix = '' if len(isl_symb) > 0: symb_prefix = '[' + ','.join(isl_symb) + '] -> ' cl = clanpy.ClanPy() cl.loop_path = plik cl.Load() arr = map(int, loop.dane) arr = sorted(list(set(arr))) for i in range(0, len(cl.statements)): cl.statements[i].petit_line = arr[i] cl.statements[i].bounds = tiling_v5.GetBounds( petit_loop, cl.statements[i].petit_line, BLOCK2, 0) print cl.statements[i].scatering for i in range(0, len(cl.statements)): cl.statements[i].domainpet = isl.Set( symb_prefix + ' { S' + str(cl.statements[i].petit_line) + '[' + ','.join(cl.statements[i].original_iterators) + '] : ' + cl.statements[i].domain + '}') #print cl.statements[i].domainpet IS = isl.UnionSet(str(cl.statements[0].domainpet)) for i in range(1, len(cl.statements)): IS = IS.union(cl.statements[i].domainpet) IS = IS.coalesce() print colored('IS', 'green') print IS #isl schedule text = 'R:= ' + str(loop.isl_rel) + '; IS := ' + str( IS) + '; schedule IS respecting R minimizing R;' print colored('ISL output', 'green') sched_dump = iscc.iscc_communicate(text) print sched_dump lines = sched_dump.split('\n') sched_maps = sched_parser.parse(lines, cl, symb_prefix) print colored('ISL schedules', 'green') for m in sched_maps: print m SCHED = isl.UnionMap(str(sched_maps[0])) for i in range(1, len(sched_maps)): SCHED = SCHED.union(sched_maps[i]) SCHED = SCHED.coalesce() #SCHED = isl.UnionMap('[N] -> { S27[i, j] -> [-i + j, 2,j] : N > 0 and 0 <= i <= -2 + N and i < j < N; S20[i, j, k] -> [-i + j, 0,0,1,k] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k < j; S23[i, j, k] -> [-i + j, 0,k,2, j] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j; S26[i, j] -> [-i + j, 1,j] : N > 0 and 0 <= i <= -2 + N and i < j < N; S16[i, j, k, m] -> [-i + j, 0,k, 0,m] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j and k < m <= -3 - i + j + k and m < j }') #SCHED = isl.UnionMap('[n, loop] -> { S12[l, i, k] -> [l,i,k] : n >= 2 and loop > 0 and 0 < l <= loop and 0 < i < n and 0 <= k < i }') print colored('SCHED', 'green') print SCHED #print colored('deltas R', 'green') # SPACE # wykryj liczbe na razie globalnie islR = Scatter(loop.isl_rel, cl, True) D = loop.isl_rel.deltas() spaces_num = sys.maxint for i in range(0, len(cl.statements)): depth = len(cl.statements[i].original_iterators) nums = 0 for j in range(0, depth): direct = ' < ' print cl.statements[i].bounds[j]['step'] # decrementation if cl.statements[i].bounds[j]['step'] == '-1': direct = ' > ' TEST = '{ S' + str(cl.statements[i].petit_line) + '[' + ','.join( cl.statements[i].original_iterators) + '] : ' + cl.statements[ i].original_iterators[j] + direct + ' 0 }' print TEST TEST = isl.Set(TEST) TEST = D.intersect(TEST) if (TEST.is_empty()): nums = nums + 1 else: break # sa ujemne # print nums if (nums < spaces_num): spaces_num = nums print colored('SPACES NUMBER', 'green') print spaces_num if spaces_num == 0 or 1 == 1: print 'No spaces or manually input calculated number' spaces_num = int(raw_input()) # vars vars = [] sym_exvars = [] for st in cl.statements: if (len(st.original_iterators) == loop.maxl): vars = st.original_iterators break for v in vars: sym_exvars.append(v * 2) ################################## SPACES = {} space = '' for st in cl.statements: tmpspaces = [] for i in range(0, spaces_num): space = st.domainpet space = space.insert_dims(isl.dim_type.param, 0, 1) space = space.set_dim_name(isl.dim_type.param, 0, sym_exvars[i]) space = str(space) space = space.replace( '}', MakesSpaceConstr(st, vars, sym_exvars, isl_symb, BLOCK, i)) print space space = isl.Set(space) tmpspaces.append(space) #print space SPACES["S" + str(st.petit_line)] = tmpspaces ################################## #experimental Rk if False: print "==============================================" spaceunion = None for s in SPACES: print s tmpspace = None for ss in SPACES[s]: if tmpspace is None: tmpspace = isl.UnionSet(str(ss)) else: tmpspace = tmpspace.union(ss).coalesce() if spaceunion is None: spaceunion = tmpspace else: spaceunion = spaceunion.union(tmpspace).coalesce() if (1 == 0): print "Experimental Rk" print "SPACE" print spaceunion print "new R" R = loop.isl_rel.from_domain_and_range(spaceunion, spaceunion).coalesce() print R #Rk = R.power() #print "Rk" print Rk print "==============================================" ################################### sched_maps_i = sched_maps #SCHED_1 SCHED_2 TIMES = [] if (spaces_num < cl.maxdim): print colored("SCHED_1:=SCHED^-1", 'green') for i in range(0, len(sched_maps_i)): sched_maps_i[i] = sched_maps_i[i].fixed_power_val(-1).coalesce() print sched_maps_i[i] #if i == 3: # sched_maps_i[i] = isl.Map('[N] -> {[i0, 0] -> S20[i, j = i0 + i]: N > 0 and 0 <= i <= -2 + N and i0=1}') TIMES.append(sched_maps_i[i]) tmp = '' if ("i0" in str(TIMES[i])): TIMES[i] = TIMES[i].insert_dims(isl.dim_type.param, 0, 1) TIMES[i] = TIMES[i].set_dim_name(isl.dim_type.param, 0, 'c') TIMES[i] = TIMES[i].insert_dims(isl.dim_type.param, 0, 1) TIMES[i] = TIMES[i].set_dim_name(isl.dim_type.param, 0, 'i0') tmp = str(TIMES[i]) if 'i1' in tmp: v = 'i1' else: v = 'i0' tmp = tmp.replace('}', " && " + str(BLOCK[spaces_num]) + "c<=" + v + "<=" + str(BLOCK[spaces_num]) + "*(c+1)-1 && i0=i0' }") # podmien na bloki else: tmp = str(TIMES[i]) TIMES[i] = isl.Map(tmp).range() print colored("TIMEi", 'green') for s in TIMES: print s print colored("TIME", 'green') else: print colored("TIME: all distance vectors elements are positive", 'green') for i in range(0, len(sched_maps_i)): TIMES.append(sched_maps_i[i].subtract( sched_maps_i[i]).complement().domain().coalesce()) ######################################### TIMES experimental code TIME = isl.UnionSet(str(TIMES[i])) for i in range(1, len(TIMES)): TIME = TIME.union(TIMES[i]) TIME = TIME.coalesce() print TIME ######################################### TILES = [] for i in range(0, len(TIMES)): TILES.append(TIMES[i]) for j in range(0, spaces_num): TILES[i] = TILES[i].intersect( SPACES['S' + str(cl.statements[i].petit_line)][j]).coalesce() TILE = isl.UnionSet(str(TILES[0])) for i in range(1, len(TILES)): TILE = TILE.union(TILES[i]) TILE = TILE.coalesce() print colored("TILE", 'green') print TILE print "Making MAP %%%" ########################################### # MAKE MAP TILE = str(TILE).split('->')[1] # j=i-i0 crazy thing #################################################### wstawia oryginalne iteratory, dodaje rownania i scattering strTILE = TILE.split(';') for st in cl.statements: s = 'S' + str(st.petit_line) for i in range(0, len(strTILE)): if s in strTILE[i]: res = re.findall(r'S\d+\[[^\]]+', strTILE[i]) a = st.scatering b = st.original_iterators[:] for k in range(0, st.getDim()): if st.bounds[k]['step'] == '-1': b[k] = '-' + b[k] if (len(a) < cl.maxdim + 1): for k in range(len(a), cl.maxdim + 1): #wyrownaj zerami a.append(u'0') if (len(b) < cl.maxdim): for k in range(len(b), cl.maxdim): #wyrownaj zerami b.append(u'0') c = a + b #scatter c[::2] = a c[1::2] = b strTILE[i] = strTILE[i].replace(res[0], s + '[' + ','.join(c)) res = res[0].split('[')[1].replace(' ', '').split(',') for r in res: if '=' in r: strTILE[i] = strTILE[i].replace( ':', ': ' + r + ' and ') break else: continue TILE = ';'.join(strTILE) print TILE ##################################################### arr = [] arr.append('t') timet = [] if spaces_num == 0: timet.append('0') for i in range(0, spaces_num): arr.append(sym_exvars[i]) timet.append(sym_exvars[i]) arr.append('i0') arr.append('c,') arr = ','.join(arr) TILE = TILE.replace('[', '[' + arr) timet = ' t = ' + '+'.join(timet) if (spaces_num >= cl.maxdim): # dodatnie wektory timet += ' and c = 0 and i0 = 0 ' TILE = symb_prefix + TILE.replace(':', ':' + timet + ' and ') for st in cl.statements: s = 'S' + str(st.petit_line) TILE = TILE.replace( s, s + '[' + ','.join(st.original_iterators) + '] -> ') print colored("MAP", 'green') print TILE print 'MAP in ISL' print isl.UnionMap(TILE).coalesce() #loop_x = iscc.iscc_communicate("L :=" + str(TILE) + "; codegen L;") #print loop_x print colored("ISL AST", 'green') loop_x = iscc.isl_ast_codegen_map(isl.UnionMap(TILE)) print loop_x # ************************************************************************** lines = loop_x.split('\n') # *********** post processing **************** print colored("POSTPROCESSING", 'green') loop_str = [] for line in lines: if line.endswith(');'): tab = imperf_tile.get_tab(line) line = line.replace(' ', '') line = line[:-2] line = line[1:] line = line.split('(') petit_st = line[0].replace('S', '') line = line[1] arr = line.split(',') s = '' for i in range(0, len(cl.statements)): # TODO if petit_st has 'c' get all statements make if from petit_line and insert to s, solution for loop over st if 'c' in petit_st: combo_st = '{' for j in range(0, len(cl.statements)): combo_st += '\n' + tab combo_st += 'if( ' + petit_st + ' == ' + str(cl.statements[j].petit_line) + ' ) ' + \ cl.statements[j].body s = combo_st + '\n' + tab + '}' elif cl.statements[i].petit_line == int( petit_st): # st.petit_line s = cl.statements[i].body for i in range( 0, len(vars) ): # todo oryginal iterators for loops with mixed indexes if (i + 1 > len(arr)): continue subt = arr[i] if (('+' in subt) or ('-' in subt)): subt = '(' + subt + ')' s = re.sub(r'\b' + vars[i] + r'\b', subt, s) loop_str.append(tab + s) else: line = line.replace('for (int', 'for(') loop_str.append(line) # *********** post processing end **************** if (1 == 1): for line in loop_str: if 'for( c1 ' in line and spaces_num < cl.maxdim: print imperf_tile.get_tab(line) + colored( '#pragma omp parallel for', 'green') print line # VALIDITY # Lex_Neg2:=[N]->{ [i0, i1]: (i0=0 and i1=0 ) or i0<0 or i0=0 and i1<0 }; # VALIDITY SCHED2 = Scatter(SCHED, cl, False) L = 2 * cl.maxdim + 1 lexvar = ["i%d" % i for i in range(0, L)] lexneg = '{[' + ','.join(lexvar) + '] : (' for i in range(0, L): lexneg += lexvar[i] + '=0' + ' and ' lexneg += '1=1) or ' for i in range(0, L): lexneg += lexvar[i] + ' < 0 and ' for j in range(0, i): lexneg += lexvar[j] + ' = 0 and ' lexneg += ' 1 = 1 or ' lexneg += ' 1 = 0 }' lexneg = isl.Set(lexneg) C = (SCHED2.fixed_power_val(-1).apply_range(islR)).apply_range(SCHED2) P = C.deltas().intersect(lexneg).coalesce() if P.is_empty(): print colored('VALIDATION OK', 'green') else: print colored('VALIDATION FAILED !!', 'red') print colored('lexneg', 'yellow') print lexneg print colored('C = (SCHED^-1(R))(SCHED)', 'yellow') print C print colored('P = C.deltas()', 'yellow') print C.deltas() print colored('P*C', 'yellow') print P for d in loop.Deps: del d.Relation
def parse(lines, cl, symb_prefix): statements = [] iterators = [] lev_st = {} maps_sched = [] for st in cl.statements: statements.append('S' + str(st.petit_line)) lev_st['S' + str(st.petit_line)] = len(st.original_iterators) if len(st.original_iterators) == cl.maxdim: iterators = st.original_iterators #print lines lev = -1 sch_out = {} poziom = -1 pairs = {} odstep = '' for l in lines: if "schedule" in l: if (len(odstep) < len(imperf_tile.get_tab(l))): odstep = imperf_tile.get_tab(l) lev = lev + 1 result = re.findall(r'{[^{]+}', l) #lev = lev + 1 #print 'Loop nest ' + str(lev) + ' ### ' for r in result: maps = r.split(';') for m in maps: #print m; #detect statement res = re.findall(r'S\d+', m) sd = res[0] item = re.findall(r'\([^\(]+\)', m)[0].replace('(', '').replace(')', '') #print sd + ' ' + item if (pairs.has_key(sd)): pairs[sd] = pairs[sd] + '+' + item else: pairs[sd] = item if str(lev) in sch_out: sch_out[str(lev)].update(pairs) else: sch_out[str(lev)] = pairs pairs = {} j = 0 for s in statements: map = symb_prefix + '{' + s + '[' for i in range(0, lev_st[s]): map += iterators[i] + ',' map = map[:-1] + '] -> [' for i in range(0, lev_st[s]): if sch_out.has_key(str(i)): # print sch_out[str(i)] if s in sch_out[str(i)]: # if sch_out[str(i)][s]!= '0': map += sch_out[str(i)][s] + ',' # else: # map += iterators[i] + ',' map = map[:-1] + '] : ' + cl.statements[j].domain + '}' maps_sched.append(isl.Map(map)) j = j + 1 return maps_sched
def tile(plik, block, permute, output_file="", L="0", SIMPLIFY="False", perfect_mode=False, parallel_option=False, rplus_mode='', cpus=2): print '' print colored('/\__ _\ /\ == \ /\ __ \ /\ ___\ /\ __ \ ', 'green') print colored('\/_/\ \/ \ \ __< \ \ __ \ \ \ \____ \ \ \/\ \ ', 'green') print colored(' \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_____\ \ \_____\ ', 'green') print colored(' \/_/ \/_/ /_/ \/_/\/_/ \/_____/ \/_____/ ', 'green') print '' print ' An Automatic Parallelizer and Optimizer' print 'based on the ' + colored('TRA', 'green') + 'nsitive ' + colored( 'C', 'green') + 'l' + colored('O', 'green') + 'sure of dependence graphs' print ' traco.sourceforge.net ' print '' DEBUG = True AGGRESSIVE_SIMPLIFY = False # TODO simpl_ub VALIDATION = 0 # levels FSSCHEDULE = 1 # RTILE expermiental INVERSE_TILING = 0 LPetit = "tmp/tmp_petit" + L + ".t" BLOCK = block.split(',') for i in range(len(BLOCK), 10): BLOCK.append(BLOCK[len(BLOCK) - 1]) BLOCK2 = [0, 6, 6] # BLOCK2 = BLOCK linestring = open(plik, 'r').read() lines = linestring.split('\n') if AGGRESSIVE_SIMPLIFY: petit_loop = convert_loop.convert_loop(lines, BLOCK2) BLOCK2 = map(str, BLOCK2) else: petit_loop = convert_loop.convert_loop(lines) file = open(LPetit, 'w') imperf = 0 endloop = 0 startloop = 0 for line in petit_loop: #sprawdz przy okazji jaka petla idealnie czy nie if 'for' in line and not 'endfor' in line: if startloop == 2: imperf = 1 startloop = 1 else: if startloop == 1: startloop = 2 if 'endfor' in line: endloop = 1 if endloop == 1 and 'endfor' not in line and not line.isspace( ) and line != '': imperf = 1 file.write(line + '\n') file.close() start = time.time() loop = Dependence.Kernel_Loop(LPetit) loop.Load_Deps() loop.Load_instrukcje() loop.Preprocess('0') loop.Get_Arrays() end = time.time() elapsed = end - start print "Dependence analysis: time taken: ", elapsed, "seconds." print colored('R', 'green') print loop.isl_rel print colored('domain R', 'green') print loop.isl_rel.domain() print colored('range R', 'green') print loop.isl_rel.range() IS = loop.isl_rel.domain().union(loop.isl_rel.range()) #s = IS.compute_schedule(loop.isl_rel, loop.isl_rel) #print s #sys.exit(0) print loop.dane cl = clanpy.ClanPy() cl.loop_path = plik cl.Load() ################################## # move to clanpy # combine clan with Dependence arr = map(int, loop.dane) arr = sorted(list(set(arr))) i = 0 for i in range(0, len(cl.statements)): cl.statements[i].petit_line = arr[i] cl.statements[i].bounds = GetBounds(petit_loop, cl.statements[i].petit_line, BLOCK2, AGGRESSIVE_SIMPLIFY) i = i + 1 ############################################################ ### R^+ isl_rel = loop.isl_rel #for i in range(0, len(cl.statements)): # print cl.statements[i].petit_line start = time.time() # ************************************************************************** RPLUSUNION = True #RPLUSUNION = False # NESTED strong experimental with Pugh only Valid why? exact_rplus = '-1' isl_relclosure = isl_rel if (RPLUSUNION): islrp = True if (rplus_mode == 'iterate'): islrp = False exact_rplus = True if not isl_rel.is_empty() and rplus_mode != 'remote': if islrp: isl_relclosure = isl_rel.transitive_closure() exact_rplus = isl_relclosure[1] isl_relclosure = isl_relclosure[0] else: isl_relclosure = relation_util.oc_IterateClosure(isl_rel) exact_rplus = True else: #R_UNDER still experimental, requires testing ############################################################################# print colored('R_UNDER', 'green') stline = [] subgraphs = [] isl_relclosure = isl.Map('{[i]->[i] : 1=0}').coalesce() for st in cl.statements: stline.append(st.petit_line) stline.sort() for i in range(0, len(stline)): w = 0 for sg in subgraphs: if stline[i] in sg: # it was used w = 1 if (w == 1): continue mylist = [] mylist.append(stline[i]) for j in range(i + 1, len(stline)): cutrel = '{[' + ','.join([ "a%d" % l for l in range(0, loop.maxl) ]) + ',' + str(stline[i]) + ']->[' + ','.join([ "b%d" % l for l in range(0, loop.maxl) ]) + ',' + str(stline[j]) + '];' cutrel += '[' + ','.join([ "a%d" % l for l in range(0, loop.maxl) ]) + ',' + str(stline[j]) + ']->[' + ','.join([ "b%d" % l for l in range(0, loop.maxl) ]) + ',' + str(stline[i]) + ']}' cutrel = isl.Map(cutrel) cutrel = isl_rel.intersect(cutrel).coalesce() if not cutrel.is_empty(): mylist.append(stline[j]) #mylist.append(maxst) subgraphs.append(mylist) print subgraphs for item in stline: count = 0 for sg in subgraphs: if item in sg: count = count + 1 if count > 1 and item != max(stline): print 'R_UNDER untested, switch RPLUSUNION to true' #exit(1) ii = 0 for sg in subgraphs: # calculate R_UNDER and its R+ ii = ii + 1 print str(ii) + "/" + str(len(subgraphs)) grel = '{' for i in sg: for j in sg: grel += '[' + ','.join([ "a%d" % l for l in range(0, loop.maxl) ]) + ',' + str(i) + ']->[' + ','.join( ["b%d" % l for l in range(0, loop.maxl)]) + ',' + str(j) + '];' grel += '}' grel = isl.Map(grel) grel = isl_rel.intersect(grel).coalesce() gp = grel.transitive_closure() if not gp[1]: print "NOT EXEACT R+" # print "iterate required" # gp = relation_util.oc_IterateClosure(grel) # iterate #else: gp = gp[0] if isl_relclosure.is_empty(): isl_relclosure = gp else: isl_relclosure = isl_relclosure.union(gp).coalesce() ############################################################################# if rplus_mode == 'remote': isl_relclosure, exact_rplus = agent.remote_tc(isl_rel) # ************************************************************************** isl_relplus = isl_relclosure print 'Rplus before' print isl_relplus # lata Pugh - eksperymentalnie #isl_rel = isl_rel.subtract(isl_relplus.apply_range(isl_rel)) print isl_rel #isl_relclosure = isl_rel.transitive_closure()[0] #isl_relplus = isl_relclosure # --------- print 'Rplus after' print isl_relplus end = time.time() elapsed = end - start print "Transitive closure: time taken: ", elapsed, "seconds." isl_ident = isl_rel if not isl_rel.is_empty: isl_ident = isl_rel.identity(isl_rel.get_space()) if (DEBUG and 1 == 0): print 'R+' print isl_relclosure #isl_relclosure = rpp if (DEBUG): color = 'red' if (exact_rplus): color = 'yellow' print colored("!! exact_rplus " + str(exact_rplus), color) isl_relclosure = isl_relclosure.union(isl_ident).coalesce() # R* = R+ u I if (INVERSE_TILING): isl_relclosure = isl_relclosure.fixed_power_val(-1).coalesce() if (DEBUG): print colored("R*", 'green') print isl_relclosure # ************************************************************************** start = time.time() B = (["b%d" % i for i in range(0, loop.maxl)]) vars = [] for st in cl.statements: if (len(st.original_iterators) == loop.maxl): vars = st.original_iterators break if (len(vars) == 0): print 'error 12, propably clan does not work' exit(12) # TODO to make abstract variubles bounds with variables must be also corrected sym_exvars = [] sym_exvars_p = [] print vars for v in vars: sym_exvars.append(v * 2) sym_exvars_p.append(v * 2 + 'p') if (DEBUG and 1 == 0): print sym_exvars print vars isl_symb = isl_rel.get_var_names(isl.dim_type.param) BLOCK = block.split(',') for i in range(len(BLOCK), 10): BLOCK.append(BLOCK[len(BLOCK) - 1]) # ************************************************************************** TILE = [] #isl TILE_STR = [] #string for st in cl.statements: if len(isl_symb) == 0: isl_symb = isl.Map(st.domain_map).get_var_names(isl.dim_type.param) tile = MakeTile(st, vars, sym_exvars, isl_symb, B) tile = ReplaceB(tile, BLOCK) TILE_STR.append(tile) tile = isl.Set(tile) # if statements before st domainv = isl.Set(st.domain_map) print domainv #if len(TILE) == 0: # domainv = isl.Set('[N] -> {[i, j, k, m]: N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j and k < m <= -3 - i + j + k and m < j and k < m and j-m < 30}') dimdom = domainv.dim(isl.dim_type.set) domainv = domainv.insert_dims(isl.dim_type.set, dimdom, loop.maxl + 1 - dimdom) tile = tile.intersect(domainv).coalesce() TILE.append(tile) if (DEBUG): DebugPrint('TILE', TILE, cl.statements) # ************************************************************************** TILE_LT = [] TILE_GT = [] for i in range(0, len(cl.statements)): TILE_LT_I = '' TILE_GT_I = '' for j in range(0, len(cl.statements)): l = CompareScat(cl.statements[i].scatering, cl.statements[j].scatering, len(vars)) tile_j = TILE_STR[j] PARTS = tile_j.split(':') for k in range(0, len(sym_exvars)): PARTS[1] = PARTS[1].replace(sym_exvars[k], sym_exvars_p[k]) PARTS[1] = PARTS[1].replace('}', ')}') lex_s_lt = MakeCustomLex( sym_exvars, sym_exvars_p, 'LT', l, cl.statements[i].petit_line > cl.statements[j].petit_line) lex_s_gt = MakeCustomLex( sym_exvars, sym_exvars_p, 'GT', l, cl.statements[i].petit_line < cl.statements[j].petit_line) join_LT = ': exists ' + ','.join( sym_exvars_p) + ' : ( ' + lex_s_lt join_GT = ': exists ' + ','.join( sym_exvars_p) + ' : ( ' + lex_s_gt TILE_LT_IJ = PARTS[0] + join_LT + PARTS[1] TILE_GT_IJ = PARTS[0] + join_GT + PARTS[1] #print TILE_LT_IJ TILE_LT_IJ = isl.Set(TILE_LT_IJ) TILE_GT_IJ = isl.Set(TILE_GT_IJ) if (j == 0): TILE_LT_I = TILE_LT_IJ TILE_GT_I = TILE_GT_IJ else: TILE_LT_I = TILE_LT_I.union(TILE_LT_IJ).coalesce() TILE_GT_I = TILE_GT_I.union(TILE_GT_IJ).coalesce() TILE_LT.append(TILE_LT_I) TILE_GT.append(TILE_GT_I) if (DEBUG): DebugPrint('TILE_LT', TILE_LT, cl.statements) DebugPrint('TILE_GT', TILE_GT, cl.statements) if (INVERSE_TILING): tmpx = TILE_LT[:] TILE_LT = TILE_GT TILE_GT = tmpx # ************************************************************************** TILE_ITR = [] for i in range(0, len(cl.statements)): if not isl_relclosure.is_empty(): TILE_ITRI = TILE[i].subtract( TILE_GT[i].apply(isl_relclosure)).coalesce() else: TILE_ITRI = TILE[i] if (SIMPLIFY): TILE_ITRI = imperf_tile.SimplifySlice(TILE_ITRI) TILE_ITR.append(TILE_ITRI) #print 'R+(TILE_GT)*TILE[i]' #print i # print TILE_GT[i].apply(isl_relclosure).intersect(TILE[i]) if (DEBUG): DebugPrint('TILE_ITR', TILE_ITR, cl.statements) # ************************************************************************** TVLD_LT = [] if not isl_relclosure.is_empty(): for i in range(0, len(cl.statements)): TVLD_LTI = (TILE_LT[i].intersect( TILE_ITR[i].apply(isl_relclosure))).subtract( TILE_GT[i].apply(isl_relclosure)).coalesce() TVLD_LT.append(TVLD_LTI) if (DEBUG): DebugPrint('TVLD_LT', TVLD_LT, cl.statements) # ************************************************************************** TILE_VLD = [] for i in range(0, len(cl.statements)): if not isl_relclosure.is_empty(): TILE_VLDI = TVLD_LT[i].union(TILE_ITR[i]).coalesce() else: TILE_VLDI = TILE_ITR[i] if (SIMPLIFY): TILE_VLDI = imperf_tile.SimplifySlice(TILE_VLDI) TILE_VLD.append(TILE_VLDI) if (DEBUG): DebugPrint('TILE_VLD', TILE_VLD, cl.statements) # ************************************************************************** TILE_VLD_EXT = [] Rapply = tiling_v3.GetRapply(vars, sym_exvars, ','.join(isl_symb + sym_exvars) + ',') for i in range(0, len(cl.statements)): TILE_VLD_EXTI = tiling_v3.Project(TILE_VLD[i].apply(Rapply).coalesce(), sym_exvars) ##################################################################################################################### if AGGRESSIVE_SIMPLIFY: cor_set = '' if (len(isl_symb) > 0): cor_set = '[' + ','.join(isl_symb) + '] -> ' else: cor_set = '' cor_set = cor_set + '{[' + ','.join(sym_exvars) + ',' + ','.join( vars) + ',' + 'v] : ' for k in range(0, i + 1): for j in range(0, len(cl.statements[k].bounds)): compar = ' <= ' add1 = ' - ' add2 = ' + ' if cl.statements[k].bounds[j]['step'] == '-1': add1 = ' + ' add2 = ' - ' compar = ' >= ' cor_set = cor_set + vars[j] + compar + cl.statements[ k].bounds[j]['ub'] + add1 + BLOCK2[j] + " && " cor_set = cor_set + cl.statements[k].bounds[j][ 'lb'] + add2 + BLOCK2[j] + compar + vars[j] + " && " cor_set = cor_set + "(" cor_set = cor_set + " v = " + str( cl.statements[i].petit_line) + " " cor_set = cor_set + ")}" print cor_set cor_set = isl.Set(cor_set) print '**************************' TILE_VLD_EXTI = TILE_VLD_EXTI.intersect(cor_set) ##################################################################################################################### TILE_VLD_EXT.append(TILE_VLD_EXTI) if (DEBUG): DebugPrint('TILE_VLD_EXT', TILE_VLD_EXT, cl.statements) # ************************************************************************** # TIME TO SCATTER - TO HONOUR ORDER OF STATEMENTS IN IMPERFECTLY NESTED LOOPS RMaps = [] for i in range(0, len(cl.statements)): RMap = '{' lbx = 0 ubx = i + 1 if (INVERSE_TILING): lbx = i ubx = len(cl.statements) for j in range(lbx, ubx): # to przy odwrotnym tilngu moze trzeba poprawic RMap = RMap + '[' + ','.join(sym_exvars + vars) + ',' + str( cl.statements[j].petit_line) + '] -> [' scati = fix_scat(cl.statements[i].scatering, loop.maxl) scatj = fix_scat(cl.statements[j].scatering, loop.maxl) combo = [ x for t in zip(scati + scatj, sym_exvars + vars) for x in t ] # obled RMap = RMap + ','.join(combo) + ',' + str( cl.statements[j].petit_line) + ']; ' # normalize j RMap = RMap[:-2] + '}' Rmap = isl.Map(RMap) RMaps.append(Rmap) if (DEBUG): DebugPrint('RMaps', RMaps, cl.statements) # ************************************************************************** for i in range(0, len(cl.statements)): TILE_VLD_EXT[i] = TILE_VLD_EXT[i].apply(RMaps[i]).coalesce() if (DEBUG): DebugPrint('TILE_VLD_EXT after Map', TILE_VLD_EXT, cl.statements) TILE_VLD_EXT_union = TILE_VLD_EXT[0] for i in range(1, len(cl.statements)): TILE_VLD_EXT_union = TILE_VLD_EXT_union.union( TILE_VLD_EXT[i]).coalesce() if (DEBUG): print colored('TILE_VLD_EXT to CodeGen', 'green') print TILE_VLD_EXT_union #if(SIMPLIFY): #TILE_VLD_EXT_union= imperf_tile.SimplifySlice(TILE_VLD_EXT_union) # ************************************************************************** # Optional Schedule s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)]) # RFS ss = s in_ = s.split(',') symb = '' if (len(isl_symb) > 0): symb += '[' + ','.join(isl_symb) + ']' + '->' RSched = symb + '{[' + s + '] -> [' RValid = RSched # RFS RFS = RSched # ***************************************************** LOOP SKEWING print colored('Loop skewing testing...', 'green') sdel = isl_rel.deltas() inp = [] for i in range(0, sdel.dim(isl.dim_type.set)): inp.append("i" + str(i)) stest = "{[" + ",".join(inp) + "] : " + inp[1] + " < 0 }" stest = isl.Set(stest) sdel = stest.intersect(sdel).coalesce() if (sdel.is_empty()): print colored('Found: i2 -> i2 + i4', 'yellow') s = s.replace('i2', 'i2 + i4') else: print colored('Failed.', 'yellow') #s = s.replace('i4', 'i6') #s = s.replace('i2', 'i2 + 2*i4') #s = s.replace('i', 'i8') #s = s.replace('i10', 'i10 + i8') #s = s.replace('i6', '2*i2 + i4 + i6') # ***************************************************** LOOP SKEWING # ***************************************************** DECREMENTATION index_arr = numpy.zeros(shape=(len(cl.statements), loop.maxl)) for k in range(0, loop.maxl): for i in range(0, len(cl.statements)): if (k < len(cl.statements[i].bounds)): index_arr[i][k] = cl.statements[i].bounds[k]['step'] print colored('step array (st,loop)', 'green') print numpy.matrix(index_arr) for k in range(0, loop.maxl): vec = index_arr[:, k] dec = 1 for i in range(0, len(cl.statements)): if (vec[i] != -1): dec = 0 break if (dec == 0): continue ind = str(2 * loop.maxl + 2 * (k + 1)) print colored('decrementation on ' + str(k + 1) + ' loop', 'yellow') s = s.replace('i' + ind, '-i' + ind) # TODO rozdzielic na gniazda i v w przyszlosci # ***************************************************** RSched += s + '] : ' RFS += ss + '] : 1=1 }' RSched = RSched + copyconstr.GetConstrSet(in_, TILE_VLD_EXT_union) + " }" print 'RSCHEDULE' print RSched Rsched = isl.Map(RSched) print 'VALIDATION CHECKING ' if (not isl_rel.is_empty() and 1 == 1): s_in = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)]) sout = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)]) out_ = sout.split(',') i1 = in_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]] i2 = out_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]] RValid += sout + '] : ' DomR = isl_rel.domain() RValid += copyconstr.GetConstrSet( i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel) s_in_ex = ','.join(["ex%d" % i for i in range(1, loop.maxl * 4 + 2)]) s_out_ex = ','.join(["ex%d'" % i for i in range(1, loop.maxl * 4 + 2)]) ex_sin = s_in_ex.split(',') ex_sout = s_out_ex.split(',') RValid += ' && exists ' + s_in_ex + ',' + s_out_ex + ' : (' RValid += ' ( ' + tiling_v3.CreateLex(ex_sin, ex_sout) + ' ) && ' RValid += ' ( ' + copyconstr.GetConstr(in_, ex_sin, Rsched) + ' ) && ' RValid += ' ( ' + copyconstr.GetConstr(out_, ex_sout, Rsched) + ' ) ' RValid += ' ) }' RValid = isl.Map(RValid).coalesce() if (RValid.is_empty()): print colored('*** VALIDATION OK ***', 'green') else: print colored('*** VALIDADION FAILED ***', 'red') print colored(RValid, 'green') if (FSSCHEDULE == 0): print RValid sys.exit(0) for st in cl.statements: z = st.domain_map z = isl.Set(z) # czy wszystkie z domain sa w TVLD_EXT VLDUNION RELATION == v # I nalezy do TVLD_EXT and exists i,j,v i nalezy do domain_map i i,j,v != I ma byc pusty VLD_VAL = Rsched.range() if (VALIDATION > 0): tiling5_valid.Valid1(Rsched, symb, in_, out_, s_in, sout, loop) else: print "OK" # ************************************************************************** #### DISCOVER PARALLELISM -- empty # ii, jj -> ii, jj' : not jj = jj' print colored('Parallelism searching', 'green') s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)]) in_ = s.split(',') sprim = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)]) out_ = sprim.split(',') Rel_base = symb + '{[' + s + '] -> [' + sprim + '] : ' #i1 = domain R 12 = R(i1) ii,i1 nalezy do VLD_EXT i'i',i2 nalezy do VLDEXT i ogr. ponizej np ii2 <> ii2' ii1 = ii1' relacja par_loop = [] if (not isl_rel.is_empty() and 1 == 1): delta = isl_rel.deltas() chkc = isl.Set("{[0," + ",".join(vars) + "]}") delta = delta.subtract(chkc) for i in range(0, loop.maxl * 4, 2): j = -1 print 'c' + str(i + 1), Rel = Rel_base tmp = '' for j in range(0, i): tmp += in_[j] + ' = ' + out_[j] + ' && ' tmp += ' not ( ' + in_[j + 1] + ' = ' + out_[ j + 1] + ' && ' + in_[j + 2] + ' = ' + out_[j + 2] + ' ) && ' Rel += tmp Rel += copyconstr.GetConstrSet( i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel) Rel += ' && ( ' + copyconstr.GetConstrSet(in_, VLD_VAL) + ' ) && ' Rel += ' ( ' + copyconstr.GetConstrSet(out_, VLD_VAL) + ' ) ' Rel += ' }' #print Rel Rel = isl.Map(Rel) if (i == 0): Rel = delta if (Rel.is_empty()): print colored('found!', 'green') par_loop.append('c' + str(i + 1)) # break else: print 'no!' end = time.time() elapsed = end - start print "Algorithm: time taken: ", elapsed, "seconds." # ************************************************************************** vars = map(str, vars) start = time.time() ast = 0 if (ast == 1): loop_x = iscc.isl_ast_codegen_map(Rsched) else: loop_x = iscc.iscc_communicate("L :=" + str(Rsched) + "; codegen L;") print loop_x # ************************************************************************** lines = loop_x.split('\n') loop_str = [] for line in lines: if line.endswith(');'): tab = imperf_tile.get_tab(line) line = line.replace(' ', '') line = line[:-2] line = line[1:] arr = line.split(',') petit_st = arr[4 * loop.maxl] s = '' for i in range(0, len(cl.statements)): # TODO if petit_st has 'c' get all statements make if from petit_line and insert to s, solution for loop over st if 'c' in petit_st: combo_st = '{' for j in range(0, len(cl.statements)): combo_st += '\n' + tab combo_st += 'if( ' + petit_st + ' == ' + str( cl.statements[j].petit_line ) + ' ) ' + cl.statements[j].body s = combo_st + '\n' + tab + '}' elif cl.statements[i].petit_line == int( petit_st): # st.petit_line s = cl.statements[i].body for i in range( 0, len(vars) ): # todo oryginal iterators for loops with mixed indexes subt = arr[2 * loop.maxl + 2 * i + 1] if (('+' in subt) or ('-' in subt)): subt = '(' + subt + ')' s = re.sub(r'\b' + vars[i] + r'\b', subt, s) loop_str.append(tab + s) else: line = line.replace('for (int', 'for(') loop_str.append(line) end = time.time() elapsed = end - start print "Code Generation: time taken: ", elapsed, "seconds.\n\n" #loop_str = '\n'.join(loop_str) filePaths = glob.glob(plik) if (output_file != ""): nazwa = output_file else: for filePath in filePaths: base = os.path.basename(filePath) nazwa = os.path.splitext(base)[0] + "_tiling" + os.path.splitext( base)[1] text_file = open(nazwa, "w") for line in loop_str: if (len(par_loop) > 0): if ('for( ' + par_loop[0] + ' ' in line): print imperf_tile.get_tab(line) + colored( '#pragma omp parallel for', 'green') text_file.write( imperf_tile.get_tab(line) + '#pragma omp parallel for' + '\n') print line text_file.write(line + '\n') text_file.close() print 'Output written to: ' + nazwa for d in loop.Deps: del d.Relation sys.exit(0) ################################################################################################### if (FSSCHEDULE): rtile = tiling_schedule.get_RTILE(TILE_VLD_EXT_union, sym_exvars, isl_rel, True) #Rsched.Range() rtile_ii = rtile #print rtile_ii for i in range(0, loop.maxl): rtile_ii = rtile_ii.remove_dims(isl.dim_type.in_, 2 * loop.maxl - i * 2 - 2, 1) rtile_ii = rtile_ii.remove_dims(isl.dim_type.out, 2 * loop.maxl - i * 2 - 2, 1) print colored('RTILE', 'green') print rtile sys.exit(0) if islrp: rtileplus, exact = rtile.transitive_closure() else: rtileplus = relation_util.oc_IterateClosure(rtile) exact = 1 print colored('RTILE+', 'green') print rtileplus if (exact != 1): print colored('RTILE+ approx', 'yellow') else: print colored('RTILE+ exact', 'green') # tiling_v2.DynamicRTILE(rtile, Rsched.range(), loop.maxl, cl, vars, RFS) try: p = int(cpus) # or int except ValueError: print 'Bad cpus parameter. ' sys.exit(0) FI = symb + ' {[' + ','.join( sym_exvars) + ',v] -> [p] : (exists k : (' item = '' for i in range(0, p): item = item + ' (p=' + str(i) + ' ' + ' && ' + sym_exvars[ 0] + ' - (2k + ' + str(i) + ') = 0 ) || ' FI += item[:-3] + ' )) &&' vv = ["i%d" % i for i in range(1, loop.maxl * 4 + 2)] s_in = ','.join(vv) s_out = ','.join(["i%d" % i for i in range(2, loop.maxl * 2 + 1, 2) ]) + ',' + vv[len(vv) - 1] rmap_fi = '{[' + s_in + '] -> [' + s_out + ']}' rmap_fi = isl.Map(rmap_fi) II_SET = TILE_VLD_EXT_union.apply(rmap_fi).coalesce() print colored('II_SET', 'green') print II_SET FI += copyconstr.GetConstrSet(sym_exvars + ['v'], II_SET) + '}' FI = isl.Map(FI).coalesce() print colored('FI', 'green') print FI RPROC = symb + '{[' + ','.join(sym_exvars) + ',v] -> [' + ','.join( sym_exvars_p) + ',vp] : ' domRTILE = rtile_ii.domain().coalesce() RPROC += copyconstr.GetConstrSet( sym_exvars + ['v'], domRTILE) + ' && ' + copyconstr.GetConstr( sym_exvars + ['v'], sym_exvars_p + ['vp'], rtile_ii) RPROC += ' && exists p,pp : ( not(p=pp) && ' + copyconstr.GetConstr( sym_exvars + ['v'], ['p'], FI) + ' && ' + copyconstr.GetConstr( sym_exvars_p + ['vp'], ['pp'], FI) + ' ) }' #print RPROC RPROC = isl.Map(RPROC).coalesce() print colored('RPROC', 'green') print RPROC s = ','.join(["i%d" % i for i in range(0, loop.maxl + 1)]) sv = s.split(',') s1 = ','.join(["o%d" % i for i in range(0, loop.maxl + 1)]) sv1 = s1.split(',') s2 = ','.join(["ex%d" % i for i in range(0, loop.maxl + 1)]) sve = s2.split(',') R_RESIDUAL = symb + '{[' + s + '] -> [' + s1 + '] : ' R_RESIDUAL += copyconstr.GetConstrSet( sv, RPROC.domain().coalesce()) + '&& ' R_RESIDUAL += copyconstr.GetConstr( sv, sv1, RPROC) + '&& not exists ' + s2 + ' : (' R_RESIDUAL += tiling_v3.CreateLex( sve, sv) + ' && ' + copyconstr.GetConstr(sve, sv1, RPROC) + ')}' R_RESIDUAL = isl.Map(R_RESIDUAL).coalesce() print colored('R_RESIDUAL', 'green') print R_RESIDUAL irp = R_RESIDUAL.fixed_power_val(-1) R_P_RESIDUAL = symb + '{[' + ','.join( sym_exvars) + ',v] -> [p,' + ','.join(sym_exvars_p) + ',vp] : ' R_P_RESIDUAL += copyconstr.GetConstr( sym_exvars_p + ['vp'], ['p'], FI) + ' && ' + copyconstr.GetConstr( sym_exvars + ['v'], sym_exvars_p + ['vp'], irp) + ' }' R_P_RESIDUAL = isl.Map(R_P_RESIDUAL) print colored('R_P_RESIDUAL', 'green') print R_P_RESIDUAL