Example #1
0
def RestoreStatements2(loop, cl, n, vars):
    loop_str = []

    for line in loop:
        if line.endswith(');'):
            tab = imperf_tile.get_tab(line)
            line = line.replace(' ', '')
            line = line[:-2]
            line = line[1:]

            arr = line.split(',')

            petit_st = arr[4 * n]

            s = ''

            for i in range(0, len(cl.statements)):
                if (cl.statements[i].petit_line == int(petit_st)
                    ):  # st.petit_line
                    s = cl.statements[i].body

            for i in range(
                    0, len(vars)
            ):  # todo oryginal iterators for loops with mixed indexes
                subt = arr[2 * n + 2 * i + 1]
                if (('+' in subt) or ('-' in subt)):
                    subt = '(' + subt + ')'
                s = re.sub(r'\b' + vars[i] + r'\b', subt, s)

            loop_str.append(tab + s)

        else:
            line = line.replace('for (int', 'for(')
            loop_str.append(line)

    loop_str = '\n'.join(loop_str)
    return loop_str
Example #2
0
print '-------------'

S1 = 'S[i][j] = max(S[i][k+i] + S[k+i+1][j], S[i][j]);'
S2 = 'S[i][j] = max(S[i][j], S[i+1][j-1]  + can_par(RNA, i, j));'

#S1 = 'S[i][j] = S[i][k+i] + S[k+i+1][j]+ S[i][j];'
#S2 = 'S[i][j] = S[i][j]+ S[i+1][j-1];'

lines = loop_x.split('\n')

loop = []

for line in lines:
    if line.endswith(');'):
        tab = imperf_tile.get_tab(line)
        line = line.replace(' ', '')
        line = line[:-2]
        line = line[1:]

        arr = line.split(',')

        if (arr[12] == '1'):
            s = S1
        else:
            s = S2

        irep = arr[7]
        jrep = arr[9]
        krep = arr[11]
Example #3
0
def fs_new(rel, rel_plus, rtile, LPetit, dane, plik, SIMPLIFY, rap, exact,
           isl_TILEbis, sym_exvars, maxl, step, isl_tilevld, vars):

    codegen = 'isl'

    # compute rtile_plus

    # podmien exact, rel na tile, rel_plus na rtile_plus

    #wq = rtile.transitive_closure()[0]

    #print wp.subtract(wq).coalesce()
    #print wq.subtract(wp).coalesce()

    if (exact):
        print 'R+ exact!'
    else:
        print 'R+ approximated. Iterate way...!'

        r0p_plus = relation_util.oc_IterateClosure(rel)
        rel_plus = r0p_plus

        isl_relclosure = rel_plus
        isl_ident = rel.identity(rel.get_space())
        isl_relclosure = isl_relclosure.union(
            isl_ident).coalesce()  # R* = R+ u I

        print 'Checking (the Pugh method)'

        # R = R compose RINV

        if (rel_plus.subtract(
                rel_plus.apply_range(rel).union(rel)).coalesce().is_empty()):
            print ' .... OK !!'
        else:
            print 'R+ failed.'
            sys.exit(0)

        #file = open('lu_rplus.txt', 'r')
        #isl_relclosure = isl.Map(file.read())
        #print isl_relclosure

    wp = GetRTilePlus(rel_plus, isl_tilevld, sym_exvars, vars).coalesce()
    rel = rtile
    rel_plus = wp

    print '## R'

    print rel

    print '## R+'

    print wp

    rel = rel.subtract(rel_plus.apply_range(rel))

    print '### R = R - R+ compose R'
    print rel

    global_size = rel.dim(isl.dim_type.in_)

    UDS = rel.domain().subtract(rel.range()).coalesce()
    UDD = rel.range().subtract(rel.domain()).coalesce()
    DOM_RAN = rel.range().union(rel.domain()).coalesce()

    cl = clanpy.ClanPy()
    cl.loop_path = plik
    cl.Load()
    cl.RunCandl()

    IS = DOM_RAN
    for i in range(0, len(cl.statements)):
        IS_ = isl.Set(cl.statements[i].domain_map).coalesce()
        print IS_
        set_size = IS_.dim(isl.dim_type.set)

        for j in range(set_size, global_size - 1):
            IS_ = IS_.insert_dims(isl.dim_type.set, j, 1)
            IS_ = IS_.set_dim_name(isl.dim_type.set, j, 'i' + str(j))
            c = isl.Constraint.eq_from_names(
                IS_.get_space(), {
                    IS_.get_dim_name(isl.dim_type.set, j): -1,
                    1: -1
                })
            IS_ = IS_.add_constraint(c).coalesce()

        set_size = IS_.dim(isl.dim_type.set)

        IS_ = IS_.insert_dims(isl.dim_type.set, set_size, 1)
        IS_ = IS_.set_dim_name(isl.dim_type.set, set_size, "v")

        #print cl.statements[i].body
        c = isl.Constraint.eq_from_names(IS_.get_space(), {
            "v": -1,
            1: int(dane[i])
        })
        IS_ = IS_.add_constraint(c).coalesce()

        if i == 0:
            IS = IS_
        else:
            IS = IS.union(IS_).coalesce()

    print "IS"
    print IS

    IND = IS.subtract(DOM_RAN).coalesce()

    print "IND"
    print IND

    n = rel.dim(isl.dim_type.in_)

    inp = []
    outp = []
    for i in range(0, n):
        inp.append("i" + str(i))
        outp.append("o" + str(i))

    # Rlex
    rlex = "{[" + ",".join(inp) + "] -> [" + ",".join(
        outp) + "] : " + tiling_v3.CreateLex(outp, inp) + "}"
    rlex = isl.Map(rlex)

    rip = rel_plus.fixed_power_val(-1)

    re_rel = isl.Map.from_domain_and_range(IS, IS)

    #print re

    print "### RE"

    re_rel = re_rel.intersect(rlex.subtract(rel_plus).subtract(rip)).coalesce()

    print re_rel

    # oblicz Re1
    #Re1 = GetRe1(re_rel, rel_plus)

    #print "### RE2"
    #re_rel = re_rel.subtract(Re1).coalesce()
    #print re_rel
    re2 = re_rel

    W = re_rel.domain().union(re_rel.range()).coalesce()
    D = re_rel.domain().subtract(re_rel.range()).coalesce()

    rel_inv = rel.fixed_power_val(-1)

    print "R^-1"
    print rel_inv

    # R = R compose RINV

    #RR = rel.apply_range(rel_inv)
    RR = rel_inv.apply_range(rel)

    # ------ Jesli RCHECK ----------

    if (1 == 0):
        RRR1 = rel.fixed_power_val(2)
        RRR2 = rel_inv.fixed_power_val(2)
        RRR = RRR1.union(RRR2).coalesce()
        RR = RR.union(RRR).coalesce()

    # ------------------------------

    RR = RR.intersect(rlex).coalesce()

    print "### RR"
    print RR

    IND_lexmin = IND.lexmin()

    IND0ToIND = isl.Map.from_domain_and_range(IND_lexmin, IND).coalesce()

    RRPLUS = RR.transitive_closure()
    RR_EXACT = RRPLUS[1]
    RRPLUS = RRPLUS[0]

    if not RR_EXACT:
        print 'RR+ not exact'
        #sys.exit(0)

    # sprawdz dokladnosc

    R2 = GetR2(re_rel, RRPLUS)

    print '### RRPLUS'
    print RRPLUS

    print '### R2'
    R2 = R2.coalesce()
    print R2

    RRstar = RRPLUS
    RR_ident = RR.identity(RR.get_space())
    RRstar = RRstar.union(RR_ident).coalesce()  # R* = R+ u I

    print "### Rstar"
    print RRstar

    REPR = D.union(DOM_RAN.subtract(W)).coalesce()

    # poprawka
    REPR = R2.domain().subtract(R2.range()).coalesce()
    print '#REPR1'
    print REPR

    tmp = REPR.apply(RRstar).coalesce()
    REPR2 = DOM_RAN.subtract(tmp).coalesce()

    print '#REPR2'
    print REPR2
    REPR = REPR.union(REPR2).coalesce()

    REPR = imperf_tile.SimplifySlice(REPR)

    #####
    #REPR1:= domain    RE2 - range    RE2;
    #REPR2:= (domain    R    union    R) -RR * (REPR1);

    #REPR = REPR.intersect(IS)
    print "### REPR"
    print REPR

    if (1 == 0):
        Rtmp = REPR.polyhedral_hull()
        if (Rtmp.subtract(REPR).coalesce().is_empty()
                and REPR.subtract(Rtmp).coalesce().is_empty()):
            print "upraszczanie"
            REPR = Rtmp

    R1 = RRstar.intersect_domain(REPR.coalesce())

    #  R1 = R1.intersect_range(IS)

    print 'RSCHED obliczanie :'
    print R1
    print "IND0->IND"
    print IND0ToIND
    #print R3
    print "i razem"

    #RSCHED = R1.union(IND0ToIND).coalesce()
    RSCHED = R1

    #upraszczanie
    if (SIMPLIFY and 1 == 0):
        Rtmp = RSCHED.polyhedral_hull()
        if (Rtmp.subtract(RSCHED).coalesce().is_empty()
                and RSCHED.subtract(Rtmp).coalesce().is_empty()):
            print "upraszczanie"
            RSCHED = Rtmp

    #RSCHED = imperf_tile.SimplifyMap(RSCHED)

    print "### RSCHED"
    print RSCHED

    print "### Check "
    Check_set = RSCHED.domain().union(RSCHED.range()).coalesce()

    Check_set = IS.subtract(IND).subtract(Check_set).coalesce()

    if Check_set.is_empty():
        print "OK"
    else:
        print "ERROR ! " + str(Check_set)
        sys.exit(0)

    # generowanie kodu

    D = RSCHED.domain()

    #if(SIMPLIFY):

    print "# DOMAIN RSCHED"

    print D

    D = D.apply(rap)

    D = imperf_tile.SimplifySlice(D)
    D = D.coalesce()
    print rap
    print D

    if (codegen == 'barvinok'):
        looprepr = iscc.iscc_communicate("L :=" + str(D) + "; codegen L;")

    else:  # isl
        looprepr = iscc.isl_ast_codegen(D)

    for i in range(0, 20):
        looprepr = re.sub('\\b' + 'c' + str(i) + '\\b', 't' + str(i), looprepr)

    print looprepr

    looprepr = looprepr.split('\n')

    st_reg = re.compile('\s*\(.*\);')
    vecs = []
    taby = []
    for line in looprepr:
        if (st_reg.match(line)):
            vecs.append(line)  #(isl.Set(iscc.s1_to_vec3(line, len(vecs))))
            taby.append(iscc.correct.whites(line))

    slices = []
    for vec in vecs:

        #vec = isl.Set("[g1,g2,g3] -> {[g1,g2,g3]}")

        vec = GetConstraint(vec)

        slice = vec
        if (not RSCHED.is_empty()):
            slice_ = slice.apply(RSCHED)
            slice = slice.union(slice_).coalesce()
            slice = slice_

        print '-------- IS --------'
        print IS
        slice = slice.intersect(IS).coalesce()
        print slice
        #if(SIMPLIFY):
        #slice = imperf_tile.SimplifySlice(slice)

        # EKSPERIMENTAL CODE wywal z RE instrukcje nie nalezace do RE
        if (1 == 0):
            temp = slice.intersect(W).coalesce()
            if (not temp.is_empty()):
                slice = temp

        slice = slice.apply(rap)

        wlen = len(sym_exvars)
        slice = slice.insert_dims(isl.dim_type.set, 2 * wlen, wlen * 2)
        print slice

        print isl_TILEbis

        slice = slice.intersect(isl_TILEbis)

        slices.append(slice.coalesce())

    new_loop = []
    i = 0
    for line in looprepr:
        if (st_reg.match(line)):
            #print slices[i]
            if (codegen == 'barvinok'):
                petla = iscc.iscc_communicate("L :=" + str(slices[i]) +
                                              "; codegen L;")
                petla = petla.split('\n')
            else:  #isl
                petla = iscc.isl_ast_codegen(slices[i]).split('\n')

            petla = correct.Korekta('', petla)  # dodaj { } do for
            was_par = 0  # poprawic jak sie koncza petle i sa nowe
            for s in petla:
                if 'for (int c' in s and was_par == 0:
                    new_loop.append(taby[i] + imperf_tile.get_tab(s) +
                                    '#pragma omp parallel for')
                    if "{" in s:
                        was_par = 1
                new_loop.append(taby[i] + s)

                if was_par > 0:
                    if "{" in s:
                        was_par = was_par + 1
                    if "}" in s:
                        was_par = was_par - 1
            i = i + 1
        else:
            new_loop.append(line)

    nloop = ""
    for line in new_loop:
        if line != '':
            #            if 'for (int c1' in line:   # c0 przy perf,  c1 przy imperf
            #                line = imperf_tile.get_tab(line) + "#pragma omp parallel for\n" +line
            nloop = nloop + line + "\n"

    nloop = nloop[:-1]

    nloop = nloop.split('\n')

    nloop = tiling_v3.postprocess_loop(nloop)
    lines = nloop.split('\n')

    loop = imperf_tile.RestoreStatements(lines, LPetit, dane, wlen, 1, [])

    #loop = imperf_tile.RestoreStatements(lines, LPetit, dane, maxl, step, permutate_list)

    print "=========================="
    print "OUTPUT CODE"
    print loop

    print UDS
    print UDS - REPR
Example #4
0
def tile(plik,
         block,
         permute,
         output_file="",
         L="0",
         SIMPLIFY="False",
         perfect_mode=False,
         parallel_option=False,
         rplus_mode='',
         cpus=2):

    print ''
    print colored('/\__  _\ /\  == \   /\  __ \   /\  ___\   /\  __ \   ',
                  'green')
    print colored('\/_/\ \/ \ \  __<   \ \  __ \  \ \ \____  \ \ \/\ \  ',
                  'green')
    print colored('   \ \_\  \ \_\ \_\  \ \_\ \_\  \ \_____\  \ \_____\ ',
                  'green')
    print colored('    \/_/   \/_/ /_/   \/_/\/_/   \/_____/   \/_____/ ',
                  'green')
    print ''
    print '      An Automatic Parallelizer and Optimizer'
    print 'based on the ' + colored('TRA', 'green') + 'nsitive ' + colored(
        'C', 'green') + 'l' + colored('O',
                                      'green') + 'sure of dependence graphs'
    print '             traco.sourceforge.net               '
    print ''
    print 'TIME SPACE TILING Module'

    LPetit = "tmp/tmp_petit" + L + ".t"

    BLOCK = block.split(',')
    BLOCK2 = BLOCK

    for i in range(len(BLOCK), 10):
        BLOCK.append(BLOCK[len(BLOCK) - 1])

    linestring = open(plik, 'r').read()
    lines = linestring.split('\n')

    petit_loop = convert_loop.convert_loop(lines)

    file = open(LPetit, 'w')

    imperf = 0
    endloop = 0
    startloop = 0
    for line in petit_loop:
        #sprawdz przy okazji jaka petla idealnie czy nie
        if 'for' in line and not 'endfor' in line:
            if startloop == 2:
                imperf = 1
            startloop = 1
        else:
            if startloop == 1:
                startloop = 2
        if 'endfor' in line:
            endloop = 1
        if endloop == 1 and 'endfor' not in line and not line.isspace(
        ) and line != '':
            imperf = 1

        file.write(line + '\n')

    file.close()

    start = time.time()
    loop = Dependence.Kernel_Loop(LPetit, 1)

    loop.Load_Deps()

    loop.Load_instrukcje()
    loop.PreprocessPet()
    loop.Get_Arrays()
    end = time.time()
    elapsed = end - start

    print "Dependence analysis: time taken: ", elapsed, "seconds."

    print colored('R', 'green')
    print loop.isl_rel

    isl_symb = loop.Deps[0].Relation.get_var_names(isl.dim_type.param)

    symb_prefix = ''
    if len(isl_symb) > 0:
        symb_prefix = '[' + ','.join(isl_symb) + '] -> '

    cl = clanpy.ClanPy()
    cl.loop_path = plik
    cl.Load()

    arr = map(int, loop.dane)
    arr = sorted(list(set(arr)))
    for i in range(0, len(cl.statements)):
        cl.statements[i].petit_line = arr[i]
        cl.statements[i].bounds = tiling_v5.GetBounds(
            petit_loop, cl.statements[i].petit_line, BLOCK2, 0)
        print cl.statements[i].scatering

    for i in range(0, len(cl.statements)):
        cl.statements[i].domainpet = isl.Set(
            symb_prefix + ' { S' + str(cl.statements[i].petit_line) + '[' +
            ','.join(cl.statements[i].original_iterators) + '] : ' +
            cl.statements[i].domain + '}')
        #print cl.statements[i].domainpet

    IS = isl.UnionSet(str(cl.statements[0].domainpet))
    for i in range(1, len(cl.statements)):
        IS = IS.union(cl.statements[i].domainpet)
        IS = IS.coalesce()

    print colored('IS', 'green')
    print IS

    #isl schedule
    text = 'R:= ' + str(loop.isl_rel) + '; IS := ' + str(
        IS) + '; schedule IS respecting R minimizing R;'

    print colored('ISL output', 'green')

    sched_dump = iscc.iscc_communicate(text)

    print sched_dump

    lines = sched_dump.split('\n')
    sched_maps = sched_parser.parse(lines, cl, symb_prefix)

    print colored('ISL schedules', 'green')

    for m in sched_maps:
        print m

    SCHED = isl.UnionMap(str(sched_maps[0]))
    for i in range(1, len(sched_maps)):
        SCHED = SCHED.union(sched_maps[i])
        SCHED = SCHED.coalesce()

    #SCHED = isl.UnionMap('[N] -> { S27[i, j] -> [-i + j, 2,j] : N > 0 and 0 <= i <= -2 + N and i < j < N; S20[i, j, k] -> [-i + j, 0,0,1,k] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k < j; S23[i, j, k] -> [-i + j, 0,k,2, j] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j; S26[i, j] -> [-i + j, 1,j] : N > 0 and 0 <= i <= -2 + N and i < j < N; S16[i, j, k, m] -> [-i + j, 0,k, 0,m] : N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j and k < m <= -3 - i + j + k and m < j }')

    #SCHED = isl.UnionMap('[n, loop] -> { S12[l, i, k] -> [l,i,k] : n >= 2 and loop > 0 and 0 < l <= loop and 0 < i < n and 0 <= k < i }')

    print colored('SCHED', 'green')
    print SCHED

    #print colored('deltas R', 'green')

    # SPACE

    # wykryj liczbe na razie globalnie

    islR = Scatter(loop.isl_rel, cl, True)
    D = loop.isl_rel.deltas()
    spaces_num = sys.maxint

    for i in range(0, len(cl.statements)):
        depth = len(cl.statements[i].original_iterators)
        nums = 0
        for j in range(0, depth):
            direct = ' < '
            print cl.statements[i].bounds[j]['step']  # decrementation
            if cl.statements[i].bounds[j]['step'] == '-1':
                direct = ' > '

            TEST = '{ S' + str(cl.statements[i].petit_line) + '[' + ','.join(
                cl.statements[i].original_iterators) + '] : ' + cl.statements[
                    i].original_iterators[j] + direct + ' 0 }'
            print TEST
            TEST = isl.Set(TEST)

            TEST = D.intersect(TEST)
            if (TEST.is_empty()):
                nums = nums + 1
            else:
                break  # sa ujemne
        # print nums
        if (nums < spaces_num):
            spaces_num = nums

    print colored('SPACES NUMBER', 'green')
    print spaces_num

    if spaces_num == 0 or 1 == 1:
        print 'No spaces or manually input calculated number'
        spaces_num = int(raw_input())

    # vars

    vars = []
    sym_exvars = []

    for st in cl.statements:
        if (len(st.original_iterators) == loop.maxl):
            vars = st.original_iterators
            break

    for v in vars:
        sym_exvars.append(v * 2)

    ##################################

    SPACES = {}
    space = ''

    for st in cl.statements:
        tmpspaces = []
        for i in range(0, spaces_num):
            space = st.domainpet
            space = space.insert_dims(isl.dim_type.param, 0, 1)
            space = space.set_dim_name(isl.dim_type.param, 0, sym_exvars[i])
            space = str(space)
            space = space.replace(
                '}', MakesSpaceConstr(st, vars, sym_exvars, isl_symb, BLOCK,
                                      i))
            print space
            space = isl.Set(space)

            tmpspaces.append(space)
            #print space

        SPACES["S" + str(st.petit_line)] = tmpspaces

    ##################################
    #experimental Rk

    if False:

        print "=============================================="

        spaceunion = None

        for s in SPACES:
            print s
            tmpspace = None
            for ss in SPACES[s]:
                if tmpspace is None:
                    tmpspace = isl.UnionSet(str(ss))
                else:
                    tmpspace = tmpspace.union(ss).coalesce()

            if spaceunion is None:
                spaceunion = tmpspace
            else:
                spaceunion = spaceunion.union(tmpspace).coalesce()

        if (1 == 0):
            print "Experimental Rk"
            print "SPACE"
            print spaceunion

            print "new R"
            R = loop.isl_rel.from_domain_and_range(spaceunion,
                                                   spaceunion).coalesce()
            print R

            #Rk = R.power()
            #print "Rk"
            print Rk

            print "=============================================="

    ###################################

    sched_maps_i = sched_maps  #SCHED_1 SCHED_2
    TIMES = []

    if (spaces_num < cl.maxdim):

        print colored("SCHED_1:=SCHED^-1", 'green')

        for i in range(0, len(sched_maps_i)):
            sched_maps_i[i] = sched_maps_i[i].fixed_power_val(-1).coalesce()

            print sched_maps_i[i]

            #if i == 3:
            #    sched_maps_i[i] = isl.Map('[N] -> {[i0, 0] -> S20[i, j = i0 + i]: N > 0 and 0 <= i <= -2 + N and i0=1}')

            TIMES.append(sched_maps_i[i])

            tmp = ''

            if ("i0" in str(TIMES[i])):

                TIMES[i] = TIMES[i].insert_dims(isl.dim_type.param, 0, 1)
                TIMES[i] = TIMES[i].set_dim_name(isl.dim_type.param, 0, 'c')
                TIMES[i] = TIMES[i].insert_dims(isl.dim_type.param, 0, 1)
                TIMES[i] = TIMES[i].set_dim_name(isl.dim_type.param, 0, 'i0')
                tmp = str(TIMES[i])

                if 'i1' in tmp:
                    v = 'i1'
                else:
                    v = 'i0'

                tmp = tmp.replace('}', " && " + str(BLOCK[spaces_num]) +
                                  "c<=" + v + "<=" + str(BLOCK[spaces_num]) +
                                  "*(c+1)-1 && i0=i0' }")  # podmien na bloki

            else:
                tmp = str(TIMES[i])

            TIMES[i] = isl.Map(tmp).range()

        print colored("TIMEi", 'green')

        for s in TIMES:
            print s

        print colored("TIME", 'green')
    else:
        print colored("TIME: all distance vectors elements are positive",
                      'green')
        for i in range(0, len(sched_maps_i)):
            TIMES.append(sched_maps_i[i].subtract(
                sched_maps_i[i]).complement().domain().coalesce())

    ######################################### TIMES experimental code

    TIME = isl.UnionSet(str(TIMES[i]))
    for i in range(1, len(TIMES)):
        TIME = TIME.union(TIMES[i])
        TIME = TIME.coalesce()

    print TIME

    #########################################

    TILES = []

    for i in range(0, len(TIMES)):
        TILES.append(TIMES[i])
        for j in range(0, spaces_num):
            TILES[i] = TILES[i].intersect(
                SPACES['S' + str(cl.statements[i].petit_line)][j]).coalesce()

    TILE = isl.UnionSet(str(TILES[0]))
    for i in range(1, len(TILES)):
        TILE = TILE.union(TILES[i])
        TILE = TILE.coalesce()

    print colored("TILE", 'green')
    print TILE
    print "Making MAP %%%"

    ###########################################

    # MAKE MAP

    TILE = str(TILE).split('->')[1]

    # j=i-i0 crazy thing

    ####################################################   wstawia oryginalne iteratory, dodaje rownania i scattering
    strTILE = TILE.split(';')
    for st in cl.statements:
        s = 'S' + str(st.petit_line)
        for i in range(0, len(strTILE)):
            if s in strTILE[i]:
                res = re.findall(r'S\d+\[[^\]]+', strTILE[i])

                a = st.scatering
                b = st.original_iterators[:]

                for k in range(0, st.getDim()):
                    if st.bounds[k]['step'] == '-1':
                        b[k] = '-' + b[k]

                if (len(a) < cl.maxdim + 1):
                    for k in range(len(a), cl.maxdim + 1):  #wyrownaj zerami
                        a.append(u'0')

                if (len(b) < cl.maxdim):
                    for k in range(len(b), cl.maxdim):  #wyrownaj zerami
                        b.append(u'0')

                c = a + b  #scatter
                c[::2] = a
                c[1::2] = b

                strTILE[i] = strTILE[i].replace(res[0], s + '[' + ','.join(c))
                res = res[0].split('[')[1].replace(' ', '').split(',')
                for r in res:
                    if '=' in r:
                        strTILE[i] = strTILE[i].replace(
                            ':', ': ' + r + ' and ')
                break
            else:
                continue

    TILE = ';'.join(strTILE)
    print TILE

    #####################################################

    arr = []
    arr.append('t')
    timet = []
    if spaces_num == 0:
        timet.append('0')
    for i in range(0, spaces_num):
        arr.append(sym_exvars[i])
        timet.append(sym_exvars[i])
    arr.append('i0')
    arr.append('c,')
    arr = ','.join(arr)

    TILE = TILE.replace('[', '[' + arr)

    timet = ' t = ' + '+'.join(timet)

    if (spaces_num >= cl.maxdim):  # dodatnie wektory
        timet += ' and  c = 0 and i0 = 0 '

    TILE = symb_prefix + TILE.replace(':', ':' + timet + ' and ')

    for st in cl.statements:
        s = 'S' + str(st.petit_line)
        TILE = TILE.replace(
            s, s + '[' + ','.join(st.original_iterators) + '] -> ')

    print colored("MAP", 'green')
    print TILE

    print 'MAP in ISL'
    print isl.UnionMap(TILE).coalesce()

    #loop_x = iscc.iscc_communicate("L :=" + str(TILE) + "; codegen L;")
    #print loop_x

    print colored("ISL AST", 'green')

    loop_x = iscc.isl_ast_codegen_map(isl.UnionMap(TILE))
    print loop_x

    # **************************************************************************
    lines = loop_x.split('\n')

    # *********** post processing ****************

    print colored("POSTPROCESSING", 'green')

    loop_str = []

    for line in lines:
        if line.endswith(');'):
            tab = imperf_tile.get_tab(line)
            line = line.replace(' ', '')
            line = line[:-2]
            line = line[1:]

            line = line.split('(')

            petit_st = line[0].replace('S', '')
            line = line[1]

            arr = line.split(',')

            s = ''

            for i in range(0, len(cl.statements)):

                # TODO if petit_st has 'c' get all statements make if from petit_line and insert to s, solution for loop over st
                if 'c' in petit_st:
                    combo_st = '{'
                    for j in range(0, len(cl.statements)):
                        combo_st += '\n' + tab
                        combo_st += 'if( ' + petit_st + ' == ' + str(cl.statements[j].petit_line) + ' ) ' + \
                                    cl.statements[j].body
                    s = combo_st + '\n' + tab + '}'
                elif cl.statements[i].petit_line == int(
                        petit_st):  # st.petit_line
                    s = cl.statements[i].body

            for i in range(
                    0, len(vars)
            ):  # todo oryginal iterators for loops with mixed indexes

                if (i + 1 > len(arr)):
                    continue

                subt = arr[i]
                if (('+' in subt) or ('-' in subt)):
                    subt = '(' + subt + ')'
                s = re.sub(r'\b' + vars[i] + r'\b', subt, s)

            loop_str.append(tab + s)

        else:
            line = line.replace('for (int', 'for(')
            loop_str.append(line)

    # *********** post processing end ****************

    if (1 == 1):
        for line in loop_str:
            if 'for( c1 ' in line and spaces_num < cl.maxdim:
                print imperf_tile.get_tab(line) + colored(
                    '#pragma omp parallel for', 'green')
            print line

    # VALIDITY

    # Lex_Neg2:=[N]->{ [i0, i1]: (i0=0 and i1=0 ) or i0<0  or i0=0 and i1<0 };

    # VALIDITY

    SCHED2 = Scatter(SCHED, cl, False)

    L = 2 * cl.maxdim + 1

    lexvar = ["i%d" % i for i in range(0, L)]

    lexneg = '{[' + ','.join(lexvar) + '] : ('

    for i in range(0, L):
        lexneg += lexvar[i] + '=0' + ' and '

    lexneg += '1=1) or '

    for i in range(0, L):
        lexneg += lexvar[i] + ' < 0 and '
        for j in range(0, i):
            lexneg += lexvar[j] + ' = 0 and '
        lexneg += ' 1 = 1 or '
    lexneg += ' 1 = 0 }'

    lexneg = isl.Set(lexneg)

    C = (SCHED2.fixed_power_val(-1).apply_range(islR)).apply_range(SCHED2)

    P = C.deltas().intersect(lexneg).coalesce()

    if P.is_empty():
        print colored('VALIDATION OK', 'green')
    else:
        print colored('VALIDATION FAILED !!', 'red')

    print colored('lexneg', 'yellow')
    print lexneg
    print colored('C = (SCHED^-1(R))(SCHED)', 'yellow')
    print C
    print colored('P = C.deltas()', 'yellow')
    print C.deltas()
    print colored('P*C', 'yellow')
    print P

    for d in loop.Deps:
        del d.Relation
Example #5
0
def parse(lines, cl, symb_prefix):

    statements = []
    iterators = []
    lev_st = {}
    maps_sched = []

    for st in cl.statements:
        statements.append('S' + str(st.petit_line))
        lev_st['S' + str(st.petit_line)] = len(st.original_iterators)
        if len(st.original_iterators) == cl.maxdim:
            iterators = st.original_iterators

    #print lines
    lev = -1
    sch_out = {}
    poziom = -1
    pairs = {}
    odstep = ''

    for l in lines:

        if "schedule" in l:

            if (len(odstep) < len(imperf_tile.get_tab(l))):
                odstep = imperf_tile.get_tab(l)
                lev = lev + 1

            result = re.findall(r'{[^{]+}', l)

            #lev = lev + 1
            #print 'Loop nest ' + str(lev) + '   ### '

            for r in result:

                maps = r.split(';')
                for m in maps:

                    #print m;
                    #detect statement
                    res = re.findall(r'S\d+', m)
                    sd = res[0]
                    item = re.findall(r'\([^\(]+\)',
                                      m)[0].replace('(', '').replace(')', '')
                    #print sd + ' ' + item

                    if (pairs.has_key(sd)):
                        pairs[sd] = pairs[sd] + '+' + item
                    else:
                        pairs[sd] = item

            if str(lev) in sch_out:
                sch_out[str(lev)].update(pairs)
            else:
                sch_out[str(lev)] = pairs

            pairs = {}

    j = 0
    for s in statements:
        map = symb_prefix + '{' + s + '['
        for i in range(0, lev_st[s]):
            map += iterators[i] + ','
        map = map[:-1] + '] -> ['

        for i in range(0, lev_st[s]):
            if sch_out.has_key(str(i)):
                #                print sch_out[str(i)]
                if s in sch_out[str(i)]:
                    #                    if sch_out[str(i)][s]!= '0':
                    map += sch_out[str(i)][s] + ','
        # else:
        #    map += iterators[i] + ','

        map = map[:-1] + '] : ' + cl.statements[j].domain + '}'

        maps_sched.append(isl.Map(map))
        j = j + 1

    return maps_sched
Example #6
0
def tile(plik,
         block,
         permute,
         output_file="",
         L="0",
         SIMPLIFY="False",
         perfect_mode=False,
         parallel_option=False,
         rplus_mode='',
         cpus=2):

    print ''
    print colored('/\__  _\ /\  == \   /\  __ \   /\  ___\   /\  __ \   ',
                  'green')
    print colored('\/_/\ \/ \ \  __<   \ \  __ \  \ \ \____  \ \ \/\ \  ',
                  'green')
    print colored('   \ \_\  \ \_\ \_\  \ \_\ \_\  \ \_____\  \ \_____\ ',
                  'green')
    print colored('    \/_/   \/_/ /_/   \/_/\/_/   \/_____/   \/_____/ ',
                  'green')
    print ''
    print '      An Automatic Parallelizer and Optimizer'
    print 'based on the ' + colored('TRA', 'green') + 'nsitive ' + colored(
        'C', 'green') + 'l' + colored('O',
                                      'green') + 'sure of dependence graphs'
    print '             traco.sourceforge.net               '
    print ''

    DEBUG = True
    AGGRESSIVE_SIMPLIFY = False  # TODO simpl_ub
    VALIDATION = 0  # levels

    FSSCHEDULE = 1  # RTILE expermiental
    INVERSE_TILING = 0

    LPetit = "tmp/tmp_petit" + L + ".t"

    BLOCK = block.split(',')

    for i in range(len(BLOCK), 10):
        BLOCK.append(BLOCK[len(BLOCK) - 1])

    BLOCK2 = [0, 6, 6]
    # BLOCK2 = BLOCK

    linestring = open(plik, 'r').read()
    lines = linestring.split('\n')

    if AGGRESSIVE_SIMPLIFY:
        petit_loop = convert_loop.convert_loop(lines, BLOCK2)
        BLOCK2 = map(str, BLOCK2)
    else:
        petit_loop = convert_loop.convert_loop(lines)

    file = open(LPetit, 'w')

    imperf = 0
    endloop = 0
    startloop = 0
    for line in petit_loop:
        #sprawdz przy okazji jaka petla idealnie czy nie
        if 'for' in line and not 'endfor' in line:
            if startloop == 2:
                imperf = 1
            startloop = 1
        else:
            if startloop == 1:
                startloop = 2
        if 'endfor' in line:
            endloop = 1
        if endloop == 1 and 'endfor' not in line and not line.isspace(
        ) and line != '':
            imperf = 1

        file.write(line + '\n')

    file.close()

    start = time.time()
    loop = Dependence.Kernel_Loop(LPetit)

    loop.Load_Deps()
    loop.Load_instrukcje()
    loop.Preprocess('0')
    loop.Get_Arrays()
    end = time.time()
    elapsed = end - start

    print "Dependence analysis: time taken: ", elapsed, "seconds."

    print colored('R', 'green')
    print loop.isl_rel

    print colored('domain R', 'green')
    print loop.isl_rel.domain()
    print colored('range R', 'green')
    print loop.isl_rel.range()

    IS = loop.isl_rel.domain().union(loop.isl_rel.range())
    #s = IS.compute_schedule(loop.isl_rel, loop.isl_rel)

    #print s
    #sys.exit(0)

    print loop.dane

    cl = clanpy.ClanPy()
    cl.loop_path = plik
    cl.Load()

    ##################################
    # move to clanpy
    # combine clan with Dependence
    arr = map(int, loop.dane)
    arr = sorted(list(set(arr)))
    i = 0

    for i in range(0, len(cl.statements)):
        cl.statements[i].petit_line = arr[i]
        cl.statements[i].bounds = GetBounds(petit_loop,
                                            cl.statements[i].petit_line,
                                            BLOCK2, AGGRESSIVE_SIMPLIFY)
        i = i + 1

    ############################################################

    ### R^+

    isl_rel = loop.isl_rel

    #for i in range(0, len(cl.statements)):
    #    print cl.statements[i].petit_line

    start = time.time()

    # **************************************************************************

    RPLUSUNION = True
    #RPLUSUNION = False # NESTED strong experimental with Pugh only Valid why?

    exact_rplus = '-1'
    isl_relclosure = isl_rel

    if (RPLUSUNION):

        islrp = True

        if (rplus_mode == 'iterate'):
            islrp = False

        exact_rplus = True

        if not isl_rel.is_empty() and rplus_mode != 'remote':
            if islrp:
                isl_relclosure = isl_rel.transitive_closure()
                exact_rplus = isl_relclosure[1]
                isl_relclosure = isl_relclosure[0]
            else:
                isl_relclosure = relation_util.oc_IterateClosure(isl_rel)
                exact_rplus = True

    else:  #R_UNDER still experimental, requires testing
        #############################################################################
        print colored('R_UNDER', 'green')
        stline = []
        subgraphs = []

        isl_relclosure = isl.Map('{[i]->[i] : 1=0}').coalesce()

        for st in cl.statements:
            stline.append(st.petit_line)

        stline.sort()

        for i in range(0, len(stline)):
            w = 0
            for sg in subgraphs:
                if stline[i] in sg:  # it was used
                    w = 1
            if (w == 1):
                continue

            mylist = []
            mylist.append(stline[i])
            for j in range(i + 1, len(stline)):
                cutrel = '{[' + ','.join([
                    "a%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[i]) + ']->[' + ','.join([
                    "b%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[j]) + '];'
                cutrel += '[' + ','.join([
                    "a%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[j]) + ']->[' + ','.join([
                    "b%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[i]) + ']}'
                cutrel = isl.Map(cutrel)
                cutrel = isl_rel.intersect(cutrel).coalesce()
                if not cutrel.is_empty():
                    mylist.append(stline[j])
            #mylist.append(maxst)
            subgraphs.append(mylist)

        print subgraphs

        for item in stline:
            count = 0
            for sg in subgraphs:
                if item in sg:
                    count = count + 1
            if count > 1 and item != max(stline):
                print 'R_UNDER untested, switch RPLUSUNION to true'
                #exit(1)

        ii = 0
        for sg in subgraphs:  # calculate R_UNDER and its R+
            ii = ii + 1
            print str(ii) + "/" + str(len(subgraphs))
            grel = '{'
            for i in sg:
                for j in sg:
                    grel += '[' + ','.join([
                        "a%d" % l for l in range(0, loop.maxl)
                    ]) + ',' + str(i) + ']->[' + ','.join(
                        ["b%d" % l
                         for l in range(0, loop.maxl)]) + ',' + str(j) + '];'
            grel += '}'
            grel = isl.Map(grel)
            grel = isl_rel.intersect(grel).coalesce()

            gp = grel.transitive_closure()
            if not gp[1]:
                print "NOT EXEACT R+"
            #    print "iterate required"
            #    gp = relation_util.oc_IterateClosure(grel)  # iterate

            #else:
            gp = gp[0]

            if isl_relclosure.is_empty():
                isl_relclosure = gp
            else:
                isl_relclosure = isl_relclosure.union(gp).coalesce()
    #############################################################################

    if rplus_mode == 'remote':
        isl_relclosure, exact_rplus = agent.remote_tc(isl_rel)

    # **************************************************************************

    isl_relplus = isl_relclosure

    print 'Rplus before'
    print isl_relplus

    # lata Pugh - eksperymentalnie
    #isl_rel = isl_rel.subtract(isl_relplus.apply_range(isl_rel))

    print isl_rel
    #isl_relclosure = isl_rel.transitive_closure()[0]
    #isl_relplus = isl_relclosure
    # ---------

    print 'Rplus after'
    print isl_relplus

    end = time.time()
    elapsed = end - start
    print "Transitive closure: time taken: ", elapsed, "seconds."

    isl_ident = isl_rel
    if not isl_rel.is_empty:
        isl_ident = isl_rel.identity(isl_rel.get_space())

    if (DEBUG and 1 == 0):
        print 'R+'
        print isl_relclosure

    #isl_relclosure = rpp
    if (DEBUG):
        color = 'red'
        if (exact_rplus):
            color = 'yellow'
        print colored("!! exact_rplus " + str(exact_rplus), color)

    isl_relclosure = isl_relclosure.union(isl_ident).coalesce()  # R* = R+ u I

    if (INVERSE_TILING):
        isl_relclosure = isl_relclosure.fixed_power_val(-1).coalesce()

    if (DEBUG):
        print colored("R*", 'green')
        print isl_relclosure

    # **************************************************************************
    start = time.time()

    B = (["b%d" % i for i in range(0, loop.maxl)])

    vars = []
    for st in cl.statements:
        if (len(st.original_iterators) == loop.maxl):
            vars = st.original_iterators
            break

    if (len(vars) == 0):
        print 'error 12, propably clan does not work'
        exit(12)

    # TODO to make abstract variubles bounds with variables must be also corrected

    sym_exvars = []
    sym_exvars_p = []
    print vars
    for v in vars:
        sym_exvars.append(v * 2)
        sym_exvars_p.append(v * 2 + 'p')

    if (DEBUG and 1 == 0):
        print sym_exvars
        print vars

    isl_symb = isl_rel.get_var_names(isl.dim_type.param)

    BLOCK = block.split(',')

    for i in range(len(BLOCK), 10):
        BLOCK.append(BLOCK[len(BLOCK) - 1])

    # **************************************************************************

    TILE = []  #isl
    TILE_STR = []  #string

    for st in cl.statements:
        if len(isl_symb) == 0:
            isl_symb = isl.Map(st.domain_map).get_var_names(isl.dim_type.param)
        tile = MakeTile(st, vars, sym_exvars, isl_symb, B)
        tile = ReplaceB(tile, BLOCK)
        TILE_STR.append(tile)
        tile = isl.Set(tile)

        # if statements before st
        domainv = isl.Set(st.domain_map)
        print domainv

        #if len(TILE) == 0:
        #    domainv = isl.Set('[N] -> {[i, j, k, m]: N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j and k < m <= -3 - i + j + k and m < j and k < m and j-m < 30}')

        dimdom = domainv.dim(isl.dim_type.set)
        domainv = domainv.insert_dims(isl.dim_type.set, dimdom,
                                      loop.maxl + 1 - dimdom)

        tile = tile.intersect(domainv).coalesce()

        TILE.append(tile)

    if (DEBUG):
        DebugPrint('TILE', TILE, cl.statements)

    # **************************************************************************

    TILE_LT = []
    TILE_GT = []

    for i in range(0, len(cl.statements)):
        TILE_LT_I = ''
        TILE_GT_I = ''
        for j in range(0, len(cl.statements)):

            l = CompareScat(cl.statements[i].scatering,
                            cl.statements[j].scatering, len(vars))

            tile_j = TILE_STR[j]

            PARTS = tile_j.split(':')
            for k in range(0, len(sym_exvars)):
                PARTS[1] = PARTS[1].replace(sym_exvars[k], sym_exvars_p[k])

            PARTS[1] = PARTS[1].replace('}', ')}')

            lex_s_lt = MakeCustomLex(
                sym_exvars, sym_exvars_p, 'LT', l,
                cl.statements[i].petit_line > cl.statements[j].petit_line)
            lex_s_gt = MakeCustomLex(
                sym_exvars, sym_exvars_p, 'GT', l,
                cl.statements[i].petit_line < cl.statements[j].petit_line)

            join_LT = ':  exists  ' + ','.join(
                sym_exvars_p) + ' : ( ' + lex_s_lt
            join_GT = ':  exists  ' + ','.join(
                sym_exvars_p) + ' : ( ' + lex_s_gt

            TILE_LT_IJ = PARTS[0] + join_LT + PARTS[1]
            TILE_GT_IJ = PARTS[0] + join_GT + PARTS[1]

            #print TILE_LT_IJ
            TILE_LT_IJ = isl.Set(TILE_LT_IJ)
            TILE_GT_IJ = isl.Set(TILE_GT_IJ)

            if (j == 0):
                TILE_LT_I = TILE_LT_IJ
                TILE_GT_I = TILE_GT_IJ
            else:
                TILE_LT_I = TILE_LT_I.union(TILE_LT_IJ).coalesce()
                TILE_GT_I = TILE_GT_I.union(TILE_GT_IJ).coalesce()

        TILE_LT.append(TILE_LT_I)
        TILE_GT.append(TILE_GT_I)

    if (DEBUG):
        DebugPrint('TILE_LT', TILE_LT, cl.statements)
        DebugPrint('TILE_GT', TILE_GT, cl.statements)

    if (INVERSE_TILING):
        tmpx = TILE_LT[:]
        TILE_LT = TILE_GT
        TILE_GT = tmpx

# **************************************************************************

    TILE_ITR = []

    for i in range(0, len(cl.statements)):
        if not isl_relclosure.is_empty():
            TILE_ITRI = TILE[i].subtract(
                TILE_GT[i].apply(isl_relclosure)).coalesce()
        else:
            TILE_ITRI = TILE[i]
        if (SIMPLIFY):
            TILE_ITRI = imperf_tile.SimplifySlice(TILE_ITRI)
        TILE_ITR.append(TILE_ITRI)

        #print 'R+(TILE_GT)*TILE[i]'
        #print i
    #  print TILE_GT[i].apply(isl_relclosure).intersect(TILE[i])

    if (DEBUG):
        DebugPrint('TILE_ITR', TILE_ITR, cl.statements)

# **************************************************************************

    TVLD_LT = []

    if not isl_relclosure.is_empty():
        for i in range(0, len(cl.statements)):
            TVLD_LTI = (TILE_LT[i].intersect(
                TILE_ITR[i].apply(isl_relclosure))).subtract(
                    TILE_GT[i].apply(isl_relclosure)).coalesce()
            TVLD_LT.append(TVLD_LTI)

        if (DEBUG):
            DebugPrint('TVLD_LT', TVLD_LT, cl.statements)

# **************************************************************************

    TILE_VLD = []

    for i in range(0, len(cl.statements)):
        if not isl_relclosure.is_empty():
            TILE_VLDI = TVLD_LT[i].union(TILE_ITR[i]).coalesce()
        else:
            TILE_VLDI = TILE_ITR[i]
        if (SIMPLIFY):
            TILE_VLDI = imperf_tile.SimplifySlice(TILE_VLDI)
        TILE_VLD.append(TILE_VLDI)

    if (DEBUG):
        DebugPrint('TILE_VLD', TILE_VLD, cl.statements)

# **************************************************************************

    TILE_VLD_EXT = []

    Rapply = tiling_v3.GetRapply(vars, sym_exvars,
                                 ','.join(isl_symb + sym_exvars) + ',')

    for i in range(0, len(cl.statements)):
        TILE_VLD_EXTI = tiling_v3.Project(TILE_VLD[i].apply(Rapply).coalesce(),
                                          sym_exvars)

        #####################################################################################################################
        if AGGRESSIVE_SIMPLIFY:

            cor_set = ''
            if (len(isl_symb) > 0):
                cor_set = '[' + ','.join(isl_symb) + '] -> '
            else:
                cor_set = ''

            cor_set = cor_set + '{[' + ','.join(sym_exvars) + ',' + ','.join(
                vars) + ',' + 'v] : '

            for k in range(0, i + 1):
                for j in range(0, len(cl.statements[k].bounds)):
                    compar = ' <= '
                    add1 = ' - '
                    add2 = ' + '
                    if cl.statements[k].bounds[j]['step'] == '-1':
                        add1 = ' + '
                        add2 = ' - '
                        compar = ' >= '
                    cor_set = cor_set + vars[j] + compar + cl.statements[
                        k].bounds[j]['ub'] + add1 + BLOCK2[j] + " && "
                    cor_set = cor_set + cl.statements[k].bounds[j][
                        'lb'] + add2 + BLOCK2[j] + compar + vars[j] + " && "

                cor_set = cor_set + "("
                cor_set = cor_set + " v = " + str(
                    cl.statements[i].petit_line) + " "
                cor_set = cor_set + ")}"

                print cor_set

                cor_set = isl.Set(cor_set)

                print '**************************'

                TILE_VLD_EXTI = TILE_VLD_EXTI.intersect(cor_set)
#####################################################################################################################

        TILE_VLD_EXT.append(TILE_VLD_EXTI)

    if (DEBUG):
        DebugPrint('TILE_VLD_EXT', TILE_VLD_EXT, cl.statements)

# **************************************************************************

# TIME TO SCATTER - TO HONOUR ORDER OF STATEMENTS IN IMPERFECTLY NESTED LOOPS

    RMaps = []

    for i in range(0, len(cl.statements)):
        RMap = '{'
        lbx = 0
        ubx = i + 1

        if (INVERSE_TILING):
            lbx = i
            ubx = len(cl.statements)

        for j in range(lbx,
                       ubx):  # to przy odwrotnym tilngu moze trzeba poprawic
            RMap = RMap + '[' + ','.join(sym_exvars + vars) + ',' + str(
                cl.statements[j].petit_line) + '] -> ['

            scati = fix_scat(cl.statements[i].scatering, loop.maxl)
            scatj = fix_scat(cl.statements[j].scatering, loop.maxl)

            combo = [
                x for t in zip(scati + scatj, sym_exvars + vars) for x in t
            ]  # obled

            RMap = RMap + ','.join(combo) + ',' + str(
                cl.statements[j].petit_line) + ']; '
            # normalize  j

        RMap = RMap[:-2] + '}'
        Rmap = isl.Map(RMap)
        RMaps.append(Rmap)

    if (DEBUG):
        DebugPrint('RMaps', RMaps, cl.statements)

    # **************************************************************************

    for i in range(0, len(cl.statements)):
        TILE_VLD_EXT[i] = TILE_VLD_EXT[i].apply(RMaps[i]).coalesce()

    if (DEBUG):
        DebugPrint('TILE_VLD_EXT after Map', TILE_VLD_EXT, cl.statements)

    TILE_VLD_EXT_union = TILE_VLD_EXT[0]

    for i in range(1, len(cl.statements)):
        TILE_VLD_EXT_union = TILE_VLD_EXT_union.union(
            TILE_VLD_EXT[i]).coalesce()

    if (DEBUG):
        print colored('TILE_VLD_EXT to CodeGen', 'green')
        print TILE_VLD_EXT_union

    #if(SIMPLIFY):
    #TILE_VLD_EXT_union= imperf_tile.SimplifySlice(TILE_VLD_EXT_union)

# **************************************************************************

# Optional Schedule

    s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
    # RFS
    ss = s

    in_ = s.split(',')

    symb = ''
    if (len(isl_symb) > 0):
        symb += '[' + ','.join(isl_symb) + ']' + '->'

    RSched = symb + '{[' + s + '] -> ['

    RValid = RSched
    # RFS
    RFS = RSched

    # *****************************************************  LOOP SKEWING
    print colored('Loop skewing testing...', 'green')

    sdel = isl_rel.deltas()

    inp = []
    for i in range(0, sdel.dim(isl.dim_type.set)):
        inp.append("i" + str(i))

    stest = "{[" + ",".join(inp) + "] : " + inp[1] + " < 0 }"
    stest = isl.Set(stest)
    sdel = stest.intersect(sdel).coalesce()

    if (sdel.is_empty()):
        print colored('Found:  i2 -> i2 + i4', 'yellow')
        s = s.replace('i2', 'i2 + i4')
    else:
        print colored('Failed.', 'yellow')

    #s = s.replace('i4', 'i6')
    #s = s.replace('i2', 'i2 + 2*i4')
    #s = s.replace('i', 'i8')
    #s = s.replace('i10', 'i10 + i8')
    #s = s.replace('i6', '2*i2 + i4 + i6')

    # *****************************************************  LOOP SKEWING

    # *****************************************************  DECREMENTATION
    index_arr = numpy.zeros(shape=(len(cl.statements), loop.maxl))
    for k in range(0, loop.maxl):
        for i in range(0, len(cl.statements)):
            if (k < len(cl.statements[i].bounds)):
                index_arr[i][k] = cl.statements[i].bounds[k]['step']

    print colored('step array (st,loop)', 'green')
    print numpy.matrix(index_arr)

    for k in range(0, loop.maxl):
        vec = index_arr[:, k]
        dec = 1
        for i in range(0, len(cl.statements)):
            if (vec[i] != -1):
                dec = 0
                break
        if (dec == 0):
            continue
        ind = str(2 * loop.maxl + 2 * (k + 1))
        print colored('decrementation on ' + str(k + 1) + ' loop', 'yellow')
        s = s.replace('i' + ind, '-i' +
                      ind)  # TODO rozdzielic na gniazda i v w przyszlosci
    # *****************************************************

    RSched += s + '] : '

    RFS += ss + '] : 1=1 }'

    RSched = RSched + copyconstr.GetConstrSet(in_, TILE_VLD_EXT_union) + "  }"

    print 'RSCHEDULE'

    print RSched

    Rsched = isl.Map(RSched)

    print 'VALIDATION CHECKING '
    if (not isl_rel.is_empty() and 1 == 1):
        s_in = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
        sout = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)])
        out_ = sout.split(',')

        i1 = in_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]]
        i2 = out_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]]

        RValid += sout + '] : '

        DomR = isl_rel.domain()

        RValid += copyconstr.GetConstrSet(
            i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel)

        s_in_ex = ','.join(["ex%d" % i for i in range(1, loop.maxl * 4 + 2)])
        s_out_ex = ','.join(["ex%d'" % i for i in range(1, loop.maxl * 4 + 2)])
        ex_sin = s_in_ex.split(',')
        ex_sout = s_out_ex.split(',')

        RValid += ' && exists ' + s_in_ex + ',' + s_out_ex + ' : ('

        RValid += ' ( ' + tiling_v3.CreateLex(ex_sin, ex_sout) + ' ) && '

        RValid += ' ( ' + copyconstr.GetConstr(in_, ex_sin, Rsched) + ' ) && '
        RValid += ' ( ' + copyconstr.GetConstr(out_, ex_sout, Rsched) + ' ) '

        RValid += ' ) }'

        RValid = isl.Map(RValid).coalesce()

        if (RValid.is_empty()):
            print colored('*** VALIDATION OK ***', 'green')
        else:
            print colored('*** VALIDADION FAILED ***', 'red')
            print colored(RValid, 'green')
            if (FSSCHEDULE == 0):
                print RValid
                sys.exit(0)

        for st in cl.statements:
            z = st.domain_map

        z = isl.Set(z)

        # czy wszystkie z domain sa w TVLD_EXT    VLDUNION RELATION == v

        # I nalezy do TVLD_EXT and exists i,j,v i  nalezy do domain_map i   i,j,v != I ma byc pusty
        VLD_VAL = Rsched.range()

        if (VALIDATION > 0):
            tiling5_valid.Valid1(Rsched, symb, in_, out_, s_in, sout, loop)
    else:
        print "OK"

# **************************************************************************
#### DISCOVER PARALLELISM -- empty

# ii, jj -> ii, jj' : not  jj = jj'
    print colored('Parallelism searching', 'green')

    s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
    in_ = s.split(',')
    sprim = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)])
    out_ = sprim.split(',')

    Rel_base = symb + '{[' + s + '] -> [' + sprim + '] :   '

    #i1 = domain R 12 = R(i1)   ii,i1 nalezy do VLD_EXT i'i',i2 nalezy do VLDEXT i ogr. ponizej np  ii2 <> ii2' ii1 = ii1' relacja

    par_loop = []

    if (not isl_rel.is_empty() and 1 == 1):
        delta = isl_rel.deltas()
        chkc = isl.Set("{[0," + ",".join(vars) + "]}")
        delta = delta.subtract(chkc)

        for i in range(0, loop.maxl * 4, 2):
            j = -1
            print 'c' + str(i + 1),
            Rel = Rel_base
            tmp = ''
            for j in range(0, i):
                tmp += in_[j] + ' = ' + out_[j] + ' && '

            tmp += ' not ( ' + in_[j + 1] + ' = ' + out_[
                j + 1] + '  && ' + in_[j + 2] + ' = ' + out_[j + 2] + ' )  && '

            Rel += tmp
            Rel += copyconstr.GetConstrSet(
                i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel)

            Rel += ' && ( ' + copyconstr.GetConstrSet(in_, VLD_VAL) + ' ) && '
            Rel += ' ( ' + copyconstr.GetConstrSet(out_, VLD_VAL) + ' )  '

            Rel += ' }'
            #print Rel

            Rel = isl.Map(Rel)

            if (i == 0):
                Rel = delta

            if (Rel.is_empty()):
                print colored('found!', 'green')
                par_loop.append('c' + str(i + 1))
#                break
            else:
                print 'no!'

    end = time.time()
    elapsed = end - start
    print "Algorithm: time taken: ", elapsed, "seconds."

    # **************************************************************************

    vars = map(str, vars)

    start = time.time()
    ast = 0
    if (ast == 1):
        loop_x = iscc.isl_ast_codegen_map(Rsched)
    else:
        loop_x = iscc.iscc_communicate("L :=" + str(Rsched) + "; codegen L;")

    print loop_x

    # **************************************************************************
    lines = loop_x.split('\n')

    loop_str = []

    for line in lines:
        if line.endswith(');'):
            tab = imperf_tile.get_tab(line)
            line = line.replace(' ', '')
            line = line[:-2]
            line = line[1:]

            arr = line.split(',')

            petit_st = arr[4 * loop.maxl]

            s = ''

            for i in range(0, len(cl.statements)):

                # TODO if petit_st has 'c' get all statements make if from petit_line and insert to s, solution for loop over st
                if 'c' in petit_st:
                    combo_st = '{'
                    for j in range(0, len(cl.statements)):
                        combo_st += '\n' + tab
                        combo_st += 'if( ' + petit_st + ' == ' + str(
                            cl.statements[j].petit_line
                        ) + ' ) ' + cl.statements[j].body
                    s = combo_st + '\n' + tab + '}'
                elif cl.statements[i].petit_line == int(
                        petit_st):  # st.petit_line
                    s = cl.statements[i].body

            for i in range(
                    0, len(vars)
            ):  # todo oryginal iterators for loops with mixed indexes
                subt = arr[2 * loop.maxl + 2 * i + 1]
                if (('+' in subt) or ('-' in subt)):
                    subt = '(' + subt + ')'
                s = re.sub(r'\b' + vars[i] + r'\b', subt, s)

            loop_str.append(tab + s)

        else:
            line = line.replace('for (int', 'for(')
            loop_str.append(line)

    end = time.time()
    elapsed = end - start
    print "Code Generation: time taken: ", elapsed, "seconds.\n\n"

    #loop_str = '\n'.join(loop_str)
    filePaths = glob.glob(plik)
    if (output_file != ""):
        nazwa = output_file
    else:
        for filePath in filePaths:
            base = os.path.basename(filePath)
            nazwa = os.path.splitext(base)[0] + "_tiling" + os.path.splitext(
                base)[1]

    text_file = open(nazwa, "w")

    for line in loop_str:
        if (len(par_loop) > 0):
            if ('for( ' + par_loop[0] + ' ' in line):
                print imperf_tile.get_tab(line) + colored(
                    '#pragma omp parallel for', 'green')
                text_file.write(
                    imperf_tile.get_tab(line) + '#pragma omp parallel for' +
                    '\n')
        print line
        text_file.write(line + '\n')

    text_file.close()
    print 'Output written to: ' + nazwa

    for d in loop.Deps:
        del d.Relation

    sys.exit(0)

    ###################################################################################################

    if (FSSCHEDULE):

        rtile = tiling_schedule.get_RTILE(TILE_VLD_EXT_union, sym_exvars,
                                          isl_rel, True)  #Rsched.Range()

        rtile_ii = rtile

        #print rtile_ii

        for i in range(0, loop.maxl):
            rtile_ii = rtile_ii.remove_dims(isl.dim_type.in_,
                                            2 * loop.maxl - i * 2 - 2, 1)
            rtile_ii = rtile_ii.remove_dims(isl.dim_type.out,
                                            2 * loop.maxl - i * 2 - 2, 1)

        print colored('RTILE', 'green')

        print rtile

        sys.exit(0)

        if islrp:
            rtileplus, exact = rtile.transitive_closure()
        else:
            rtileplus = relation_util.oc_IterateClosure(rtile)
            exact = 1

        print colored('RTILE+', 'green')
        print rtileplus
        if (exact != 1):
            print colored('RTILE+ approx', 'yellow')
        else:
            print colored('RTILE+ exact', 'green')

    #    tiling_v2.DynamicRTILE(rtile, Rsched.range(), loop.maxl, cl, vars, RFS)

        try:
            p = int(cpus)  # or int
        except ValueError:
            print 'Bad cpus parameter. '
            sys.exit(0)

        FI = symb + ' {[' + ','.join(
            sym_exvars) + ',v] ->  [p] : (exists k : ('

        item = ''
        for i in range(0, p):
            item = item + ' (p=' + str(i) + ' ' + ' && ' + sym_exvars[
                0] + ' - (2k + ' + str(i) + ') = 0 ) || '

        FI += item[:-3] + '  )) &&'

        vv = ["i%d" % i for i in range(1, loop.maxl * 4 + 2)]
        s_in = ','.join(vv)
        s_out = ','.join(["i%d" % i for i in range(2, loop.maxl * 2 + 1, 2)
                          ]) + ',' + vv[len(vv) - 1]
        rmap_fi = '{[' + s_in + '] -> [' + s_out + ']}'
        rmap_fi = isl.Map(rmap_fi)

        II_SET = TILE_VLD_EXT_union.apply(rmap_fi).coalesce()

        print colored('II_SET', 'green')
        print II_SET

        FI += copyconstr.GetConstrSet(sym_exvars + ['v'], II_SET) + '}'

        FI = isl.Map(FI).coalesce()

        print colored('FI', 'green')
        print FI

        RPROC = symb + '{[' + ','.join(sym_exvars) + ',v] -> [' + ','.join(
            sym_exvars_p) + ',vp] : '

        domRTILE = rtile_ii.domain().coalesce()

        RPROC += copyconstr.GetConstrSet(
            sym_exvars + ['v'], domRTILE) + ' && ' + copyconstr.GetConstr(
                sym_exvars + ['v'], sym_exvars_p + ['vp'], rtile_ii)

        RPROC += ' && exists p,pp : ( not(p=pp) && ' + copyconstr.GetConstr(
            sym_exvars + ['v'], ['p'], FI) + ' && ' + copyconstr.GetConstr(
                sym_exvars_p + ['vp'], ['pp'], FI) + ' ) }'

        #print RPROC
        RPROC = isl.Map(RPROC).coalesce()

        print colored('RPROC', 'green')
        print RPROC

        s = ','.join(["i%d" % i for i in range(0, loop.maxl + 1)])
        sv = s.split(',')
        s1 = ','.join(["o%d" % i for i in range(0, loop.maxl + 1)])
        sv1 = s1.split(',')
        s2 = ','.join(["ex%d" % i for i in range(0, loop.maxl + 1)])
        sve = s2.split(',')
        R_RESIDUAL = symb + '{[' + s + '] -> [' + s1 + '] : '
        R_RESIDUAL += copyconstr.GetConstrSet(
            sv,
            RPROC.domain().coalesce()) + '&& '
        R_RESIDUAL += copyconstr.GetConstr(
            sv, sv1, RPROC) + '&&  not exists ' + s2 + ' : ('
        R_RESIDUAL += tiling_v3.CreateLex(
            sve, sv) + ' && ' + copyconstr.GetConstr(sve, sv1, RPROC) + ')}'

        R_RESIDUAL = isl.Map(R_RESIDUAL).coalesce()

        print colored('R_RESIDUAL', 'green')
        print R_RESIDUAL
        irp = R_RESIDUAL.fixed_power_val(-1)

        R_P_RESIDUAL = symb + '{[' + ','.join(
            sym_exvars) + ',v] -> [p,' + ','.join(sym_exvars_p) + ',vp] : '
        R_P_RESIDUAL += copyconstr.GetConstr(
            sym_exvars_p + ['vp'], ['p'], FI) + ' && ' + copyconstr.GetConstr(
                sym_exvars + ['v'], sym_exvars_p + ['vp'], irp) + ' }'

        R_P_RESIDUAL = isl.Map(R_P_RESIDUAL)
        print colored('R_P_RESIDUAL', 'green')
        print R_P_RESIDUAL