def simple_naive_bayes(X, y): n, _ = X.shape nTrain = int(0.5*n) #training on 50% of the data Xtrain = X[:nTrain,:] ytrain = y[:nTrain] Xtest = X[nTrain:,:] ytest = y[nTrain:] clf = MultinomialNB().fit(Xtrain, ytrain) predict_y = clf.predict(Xtest) print ytest print predict_y print rmsle(ytest, predict_y)
def simple_naive_bayes(X, y): n, _ = X.shape nTrain = int(0.5 * n) #training on 50% of the data Xtrain = X[:nTrain, :] ytrain = y[:nTrain] Xtest = X[nTrain:, :] ytest = y[nTrain:] clf = MultinomialNB().fit(Xtrain, ytrain) predict_y = clf.predict(Xtest) print ytest print predict_y print rmsle(ytest, predict_y)
def logistic_regression(X, y): n, _ = X.shape nTrain = int(0.5 * n) #training on 50% of the data Xtrain = X[:nTrain, :] ytrain = y[:nTrain] Xtest = X[nTrain:, :] ytest = y[nTrain:] for i, C in enumerate(10.**np.arange(1, 6)): clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(Xtrain, ytrain) clf_l2_LR.fit(Xtrain, ytrain) y1 = clf_l1_LR.predict(Xtest) y2 = clf_l2_LR.predict(Xtest) #L1 penalty print "L1 Penalty with C=" + str(C) print rmsle(ytest, y1) print "L2 Penalty with C=" + str(C) #L2 penalty print rmsle(ytest, y2) logreg = LinearRegression() logreg.fit(Xtrain, ytrain) y3 = logreg.predict(Xtest) print "Linear Regression" print y3 print rmsle(ytest, y3)
def logistic_regression(X, y): n, _ = X.shape nTrain = int(0.5*n) #training on 50% of the data Xtrain = X[:nTrain,:] ytrain = y[:nTrain] Xtest = X[nTrain:,:] ytest = y[nTrain:] for i, C in enumerate(10. ** np.arange(1, 6)): clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(Xtrain, ytrain) clf_l2_LR.fit(Xtrain, ytrain) y1 = clf_l1_LR.predict(Xtest) y2 = clf_l2_LR.predict(Xtest) #L1 penalty print "L1 Penalty with C=" + str(C) print rmsle(ytest, y1) print "L2 Penalty with C=" + str(C) #L2 penalty print rmsle(ytest, y2) logreg = LinearRegression() logreg.fit(Xtrain, ytrain) y3 = logreg.predict(Xtest) print "Linear Regression" print y3 print rmsle(ytest,y3)
Xtrain = X[:nTrain,:] y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:,:] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) #clf = SVC(kernel='poly') #clf.fit(Xtrain,ytrain) #pred = clf.predict(Xtest) #print "best estimator = ",clf.best_estimator_ #print "RMSE poly = ", rmsle(ytest, pred) #new stuff clf_regis = SVR(kernel='poly') clf_regis.fit(Xtrain,y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = SVR(kernel='poly') clf_casual.fit(Xtrain,y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE poly total = ", rmsle(y_total_test, pred_total)
def decision_tree(X, y1, y2, y3): n, _ = X.shape nTrain = int(0.5 * n) #training on 50% of the data Xtrain = X[:nTrain, :] ytrain = y1[:nTrain] ytrain_registered = y2[:nTrain] ytest_registered = y2[nTrain:] ytrain_casual = y3[:nTrain] ytest_casual = y3[nTrain:] Xtest = X[nTrain:, :] ytest = y1[nTrain:] #regular clf_1 = DecisionTreeRegressor(max_depth=None) clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=None), n_estimators=500) clf_4 = RandomForestRegressor(n_estimators=500, max_depth=None, min_samples_split=1, random_state=0) clf_5 = ExtraTreesRegressor(n_estimators=500, max_depth=None, min_samples_split=1, random_state=0) clf_3 = GradientBoostingRegressor(n_estimators=500, max_depth=None, random_state=0) print "finished generating tree" clf_1.fit(Xtrain, ytrain_registered) clf_2.fit(Xtrain, ytrain_registered) clf_3.fit(Xtrain, ytrain_registered) clf_4.fit(Xtrain, ytrain_registered) clf_5.fit(Xtrain, ytrain_registered) print 'Finished fitting' dt_regular = clf_1.predict(Xtest) ada_regular = clf_2.predict(Xtest) grad_regular = clf_3.predict(Xtest) rf_regular = clf_4.predict(Xtest) et_regular = clf_5.predict(Xtest) #casual print "finished generating tree" clf_1.fit(Xtrain, ytrain_casual) clf_2.fit(Xtrain, ytrain_casual) clf_3.fit(Xtrain, ytrain_casual) clf_4.fit(Xtrain, ytrain_casual) clf_5.fit(Xtrain, ytrain_casual) print 'Finished fitting' dt_casual = clf_1.predict(Xtest) ada_casual = clf_2.predict(Xtest) grad_casual = clf_3.predict(Xtest) rf_casual = clf_4.predict(Xtest) et_casual = clf_5.predict(Xtest) feature_imps = clf_4.feature_importances_ print "regular decision tree" print rmsle(ytest, dt_regular + dt_casual) print "boosted decision tree" print rmsle(ytest, ada_regular + ada_casual) print "gradient tree boosting" print rmsle(ytest, grad_regular + grad_casual) print "random forest classifier" print rmsle(ytest, rf_regular + rf_casual) print "extra trees classifier" print rmsle(ytest, et_casual + et_regular) print "feature importances" print feature_imps
Xtest = X[nTrain:,:] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) clf_regis = SVR(kernel='linear') clf_regis.fit(Xtrain,y_regis_train) pred_regis = clf_regis.predict(Xtest) #print "best estimator = ",clf.best_estimator_ #print "RMSLE linear registered = ", rmsle(y_regis_test, pred_regis) clf_casual = SVR(kernel='linear') clf_casual.fit(Xtrain,y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print len(y_total_test) print len(pred_total) # if y_total is None: # print "y is none" # if pred_total is None: # print "pred is None" print "RMSLE linear total = ", rmsle(y_total_test, pred_total)
#np.random.seed(42) #np.random.shuffle(idx) #X = X[idx] #y = y[idx] Xtrain = X[:nTrain,:] y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:,:] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] neighbors = 4 #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) clf_regis = KNeighborsRegressor(n_neighbors=neighbors,algorithm='kd_tree',leaf_size=70,p=1) clf_regis.fit(Xtrain,y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = KNeighborsRegressor(n_neighbors=neighbors,algorithm='kd_tree',leaf_size=70,p=1) clf_casual.fit(Xtrain,y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE sigmoid total = ", rmsle(y_total_test, pred_total)
def decision_tree(X, y1, y2, y3): n, _ = X.shape nTrain = int(0.5 * n) #training on 50% of the data Xtrain = X[:nTrain, :] ytrain = y1[:nTrain] ytrain_registered = y2[:nTrain] ytest_registered = y2[nTrain:] ytrain_casual = y3[:nTrain] ytest_casual = y3[nTrain:] Xtest = X[nTrain:, :] ytest = y1[nTrain:] #regular #clf_1 = DecisionTreeRegressor(max_depth=None) #clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=None), #n_estimators=500) clf_4 = RandomForestRegressor(bootstrap=True, compute_importances=None, criterion='mse', max_depth=None, max_features='auto', min_density=None, min_samples_leaf=2, min_samples_split=2, n_estimators=2000, n_jobs=1, oob_score=True, random_state=None, verbose=0) #clf_5 = ExtraTreesRegressor(n_estimators=500, max_depth=None, #min_samples_split=1, random_state=0) #clf_3 = GradientBoostingRegressor(n_estimators=500, #max_depth=None, random_state=0) #rmsele_scorer = make_scorer(rmsle, greater_is_better=False) #tuned_parameters = [{'max_features': ['sqrt', 'log2', 'auto'], 'max_depth': [5, 8, 12], 'min_samples_leaf': [2, 5, 10]}] # rf_registered = GridSearchCV(RandomForestRegressor(n_jobs=1, n_estimators=1000), tuned_parameters, cv=3, verbose=2, scoring=rmsele_scorer).fit(Xtrain, ytrain_registered) # rf_casual = GridSearchCV(RandomForestRegressor(n_jobs=1, n_estimators=1000), tuned_parameters, cv=3, verbose=2, scoring=rmsele_scorer).fit(Xtrain, ytrain_casual) print "Best parameters" # print rf_registered.best_estimator_ # print rf_casual.best_estimator_ clf_4.fit(Xtrain, ytrain) rf_total = clf_4.predict(Xtest) rf_ytrain = clf_4.predict(Xtrain) print "finished generating regressor" #clf_1.fit(Xtrain, ytrain_registered) #clf_2.fit(Xtrain, ytrain_registered) #clf_3.fit(Xtrain, ytrain_registered) clf_4.fit(Xtrain, ytrain_registered) #clf_5.fit(Xtrain, ytrain_registered) print 'Finished fitting' #dt_regular = clf_1.predict(Xtest) #ada_regular = clf_2.predict(Xtest) #grad_regular = clf_3.predict(Xtest) rf_regular = clf_4.predict(Xtest) #et_regular = clf_5.predict(Xtest) #casual print "finished generating tree" #clf_1.fit(Xtrain, ytrain_casual) #clf_2.fit(Xtrain, ytrain_casual) #clf_3.fit(Xtrain, ytrain_casual) clf_4.fit(Xtrain, ytrain_casual) #clf_5.fit(Xtrain, ytrain_casual) print 'Finished fitting' #dt_casual = clf_1.predict(Xtest) #ada_casual = clf_2.predict(Xtest) #grad_casual = clf_3.predict(Xtest) rf_casual = clf_4.predict(Xtest) # #et_casual = clf_5.predict(Xtest) # feature_imps = clf_4.feature_importances_ # print "regular decision tree" # print rmsle(ytest, dt_regular + dt_casual) # print "boosted decision tree" # print rmsle(ytest, ada_regular + ada_casual) # print "gradient tree boosting" # print rmsle(ytest, grad_regular + grad_casual) print "random forest classifier" print rmsle(ytest, rf_regular + rf_casual) print rmsle(ytest, rf_total) print rmsle(ytrain, rf_ytrain) # print "extra trees classifier" # print rmsle(ytest, et_casual + et_regular) print "feature importances"
y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:, :] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] ''' #rbf param_grid = {'C': [1, 5, 10, 100],'gamma': [0.00001,0.0001, 0.001, 0.01, 0.1],} #clf = GridSearchCV(SVC(kernel='rbf'), param_grid,n_jobs=-1) clf = SVC(kernel='rbf',C=5.0,gamma=0.0001) clf.fit(Xtrain,ytrain) pred = clf.predict(Xtest) print "best estimator = ",clf.best_estimator_ print "RMSE rbf = ", rmsle(ytest, pred) #print classification_report(ytest, pred) ''' #new stuff clf_regis = SVR(kernel='rbf') clf_regis.fit(Xtrain, y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = SVR(kernel='rbf') clf_casual.fit(Xtrain, y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE rbf total = ", rmsle(y_total_test, pred_total)
def decision_tree(X, y1, y2, y3): n, _ = X.shape nTrain = int(0.5*n) #training on 50% of the data Xtrain = X[:nTrain,:] ytrain = y1[:nTrain] ytrain_registered = y2[:nTrain] ytest_registered = y2[nTrain:] ytrain_casual = y3[:nTrain] ytest_casual = y3[nTrain:] Xtest = X[nTrain:,:] ytest = y1[nTrain:] #regular #clf_1 = DecisionTreeRegressor(max_depth=None) #clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=None), #n_estimators=500) clf_4 = RandomForestRegressor(bootstrap=True, compute_importances=None, criterion='mse', max_depth=None, max_features='auto', min_density=None, min_samples_leaf=2, min_samples_split=2, n_estimators=2000, n_jobs=1, oob_score=True, random_state=None, verbose=0) #clf_5 = ExtraTreesRegressor(n_estimators=500, max_depth=None, #min_samples_split=1, random_state=0) #clf_3 = GradientBoostingRegressor(n_estimators=500, #max_depth=None, random_state=0) #rmsele_scorer = make_scorer(rmsle, greater_is_better=False) #tuned_parameters = [{'max_features': ['sqrt', 'log2', 'auto'], 'max_depth': [5, 8, 12], 'min_samples_leaf': [2, 5, 10]}] # rf_registered = GridSearchCV(RandomForestRegressor(n_jobs=1, n_estimators=1000), tuned_parameters, cv=3, verbose=2, scoring=rmsele_scorer).fit(Xtrain, ytrain_registered) # rf_casual = GridSearchCV(RandomForestRegressor(n_jobs=1, n_estimators=1000), tuned_parameters, cv=3, verbose=2, scoring=rmsele_scorer).fit(Xtrain, ytrain_casual) print "Best parameters" # print rf_registered.best_estimator_ # print rf_casual.best_estimator_ clf_4.fit(Xtrain, ytrain) rf_total = clf_4.predict(Xtest) rf_ytrain = clf_4.predict(Xtrain) print "finished generating regressor" #clf_1.fit(Xtrain, ytrain_registered) #clf_2.fit(Xtrain, ytrain_registered) #clf_3.fit(Xtrain, ytrain_registered) clf_4.fit(Xtrain, ytrain_registered) #clf_5.fit(Xtrain, ytrain_registered) print 'Finished fitting' #dt_regular = clf_1.predict(Xtest) #ada_regular = clf_2.predict(Xtest) #grad_regular = clf_3.predict(Xtest) rf_regular = clf_4.predict(Xtest) #et_regular = clf_5.predict(Xtest) #casual print "finished generating tree" #clf_1.fit(Xtrain, ytrain_casual) #clf_2.fit(Xtrain, ytrain_casual) #clf_3.fit(Xtrain, ytrain_casual) clf_4.fit(Xtrain, ytrain_casual) #clf_5.fit(Xtrain, ytrain_casual) print 'Finished fitting' #dt_casual = clf_1.predict(Xtest) #ada_casual = clf_2.predict(Xtest) #grad_casual = clf_3.predict(Xtest) rf_casual = clf_4.predict(Xtest) # #et_casual = clf_5.predict(Xtest) # feature_imps = clf_4.feature_importances_ # print "regular decision tree" # print rmsle(ytest, dt_regular + dt_casual) # print "boosted decision tree" # print rmsle(ytest, ada_regular + ada_casual) # print "gradient tree boosting" # print rmsle(ytest, grad_regular + grad_casual) print "random forest classifier" print rmsle(ytest, rf_regular + rf_casual) print rmsle(ytest, rf_total) print rmsle(ytrain, rf_ytrain) # print "extra trees classifier" # print rmsle(ytest, et_casual + et_regular) print "feature importances"
Xtrain = X[:nTrain, :] y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:, :] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) #clf = SVC(kernel='poly') #clf.fit(Xtrain,ytrain) #pred = clf.predict(Xtest) #print "best estimator = ",clf.best_estimator_ #print "RMSE poly = ", rmsle(ytest, pred) #new stuff clf_regis = SVR(kernel='poly') clf_regis.fit(Xtrain, y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = SVR(kernel='poly') clf_casual.fit(Xtrain, y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE poly total = ", rmsle(y_total_test, pred_total)
y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:,:] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] ''' #rbf param_grid = {'C': [1, 5, 10, 100],'gamma': [0.00001,0.0001, 0.001, 0.01, 0.1],} #clf = GridSearchCV(SVC(kernel='rbf'), param_grid,n_jobs=-1) clf = SVC(kernel='rbf',C=5.0,gamma=0.0001) clf.fit(Xtrain,ytrain) pred = clf.predict(Xtest) print "best estimator = ",clf.best_estimator_ print "RMSE rbf = ", rmsle(ytest, pred) #print classification_report(ytest, pred) ''' #new stuff clf_regis = SVR(kernel='rbf') clf_regis.fit(Xtrain,y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = SVR(kernel='rbf') clf_casual.fit(Xtrain,y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE rbf total = ", rmsle(y_total_test, pred_total)
Xtrain = X[:nTrain, :] y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:, :] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] neighbors = 4 #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) clf_regis = KNeighborsRegressor(n_neighbors=neighbors, algorithm='kd_tree', leaf_size=70, p=1) clf_regis.fit(Xtrain, y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = KNeighborsRegressor(n_neighbors=neighbors, algorithm='kd_tree', leaf_size=70, p=1) clf_casual.fit(Xtrain, y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE sigmoid total = ", rmsle(y_total_test, pred_total)
y_total_train = y_total[:nTrain] Xtest = X[nTrain:, :] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) clf_regis = SVR(kernel='linear') clf_regis.fit(Xtrain, y_regis_train) pred_regis = clf_regis.predict(Xtest) #print "best estimator = ",clf.best_estimator_ #print "RMSLE linear registered = ", rmsle(y_regis_test, pred_regis) clf_casual = SVR(kernel='linear') clf_casual.fit(Xtrain, y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print len(y_total_test) print len(pred_total) # if y_total is None: # print "y is none" # if pred_total is None: # print "pred is None" print "RMSLE linear total = ", rmsle(y_total_test, pred_total)
def decision_tree(X, y1, y2, y3): n, _ = X.shape nTrain = int(0.5*n) #training on 50% of the data Xtrain = X[:nTrain,:] ytrain = y1[:nTrain] ytrain_registered = y2[:nTrain] ytest_registered = y2[nTrain:] ytrain_casual = y3[:nTrain] ytest_casual = y3[nTrain:] Xtest = X[nTrain:,:] ytest = y1[nTrain:] #regular clf_1 = DecisionTreeRegressor(max_depth=None) clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=None), n_estimators=500) clf_4 = RandomForestRegressor(n_estimators=500, max_depth=None, min_samples_split=1, random_state=0) clf_5 = ExtraTreesRegressor(n_estimators=500, max_depth=None, min_samples_split=1, random_state=0) clf_3 = GradientBoostingRegressor(n_estimators=500, max_depth=None, random_state=0) print "finished generating tree" clf_1.fit(Xtrain, ytrain_registered) clf_2.fit(Xtrain, ytrain_registered) clf_3.fit(Xtrain, ytrain_registered) clf_4.fit(Xtrain, ytrain_registered) clf_5.fit(Xtrain, ytrain_registered) print 'Finished fitting' dt_regular = clf_1.predict(Xtest) ada_regular = clf_2.predict(Xtest) grad_regular = clf_3.predict(Xtest) rf_regular = clf_4.predict(Xtest) et_regular = clf_5.predict(Xtest) #casual print "finished generating tree" clf_1.fit(Xtrain, ytrain_casual) clf_2.fit(Xtrain, ytrain_casual) clf_3.fit(Xtrain, ytrain_casual) clf_4.fit(Xtrain, ytrain_casual) clf_5.fit(Xtrain, ytrain_casual) print 'Finished fitting' dt_casual = clf_1.predict(Xtest) ada_casual = clf_2.predict(Xtest) grad_casual = clf_3.predict(Xtest) rf_casual = clf_4.predict(Xtest) et_casual = clf_5.predict(Xtest) feature_imps = clf_4.feature_importances_ print "regular decision tree" print rmsle(ytest, dt_regular + dt_casual) print "boosted decision tree" print rmsle(ytest, ada_regular + ada_casual) print "gradient tree boosting" print rmsle(ytest, grad_regular + grad_casual) print "random forest classifier" print rmsle(ytest, rf_regular + rf_casual) print "extra trees classifier" print rmsle(ytest, et_casual + et_regular) print "feature importances" print feature_imps
#np.random.seed(42) #np.random.shuffle(idx) #y = y[idx] #X = X[idx] # split the data Xtrain = X[:nTrain,:] ytrain = y[:nTrain] Xtest = X[nTrain:,:] ytest = y[nTrain:] #linear clf = SVC(kernel='linear') clf.fit(Xtrain,ytrain) pred = clf.predict(Xtest) print "RMSE linear = ", rmsle(ytest, pred) #polynomial clf = SVC(kernel='poly') clf.fit(Xtrain,ytrain) pred = clf.predict(Xtest) print "RMSE poly = ", rmsle(ytest, pred) #rbf clf = SVC(kernel='rbf') clf.fit(Xtrain,ytrain) pred = clf.predict(Xtest) print "RMSE rbf = ", rmsle(ytest, pred) #sigmoid clf = SVC(kernel='sigmoid')