Example #1
0
def testDot():
    for v1 in basisVectors:
        for v2 in basisVectors:
            if v1 is v2:
                assert_almost_equal(vectors.dot(v1, v2), 1)
            else:
                assert_almost_equal(vectors.dot(v1, v2), 0)
Example #2
0
def testDot():
    for v1 in basisVectors:
        for v2 in basisVectors:
            if v1 is v2:
                assert_almost_equal(vectors.dot(v1, v2), 1)
            else:
                assert_almost_equal(vectors.dot(v1, v2), 0)
Example #3
0
    def _process(self, g, m):
        z = g / vectors.norm(g)
        x = m - (z * vectors.dot(m, z))
        x /= vectors.norm(x)
        y = vectors.cross(z, x)

        return Quaternion.fromVectors(x, y, z)
Example #4
0
    def handleLinearAcceleration(self, jointAcceleration, dt):
        """
        Perform drift correction based on incoming joint acceleration estimate.

        @param jointAcceleration: Acceleration estimate (3x1 L{np.ndarray}).
        """
        self.jointAccel = jointAcceleration

        if len(self.gyroFIFO) < 3:
            return

        # Estimate linear acceleration
        o = self.offset
        w = self.gyroFIFO
        q = self.qHat_minus_1
        a = (w[0] - w[2]) / (2 * dt)
        lt = vectors.cross(a, o)
        lr = vectors.dot(w[1], o) * w[1] - o * vectors.norm(w[1])**2
        l = (q.rotateFrame(self.jointAccel) + lt + lr)

        # Apply drift correction
        self.qMeas = self._vectorObservation(-(self.accelFIFO[1] - l),
                                             self.magFIFO[1])
        if q.dot(self.qMeas) < 0:
            self.qMeas.negate()
        q = q + 1.0 / self.k * dt * (self.qMeas - q)
        dotq = 0.5 * self.qHat * Quaternion(0, *w[0])
        self.qHat = q + dotq * dt
        self.qHat.normalise()
Example #5
0
    def handleLinearAcceleration(self, jointAcceleration, dt):
        """
        Perform drift correction based on incoming joint acceleration estimate.

        @param jointAcceleration: Acceleration estimate (3x1 L{np.ndarray}).
        """
        self.jointAccel = jointAcceleration

        if len(self.gyroFIFO) < 3:
            return

        # Estimate linear acceleration
        o = self.offset
        w = self.gyroFIFO
        q = self.qHat_minus_1
        a = (w[0] - w[2]) / (2 * dt)
        lt = vectors.cross(a, o)
        lr = vectors.dot(w[1], o) * w[1] - o * vectors.norm(w[1])**2
        l = (q.rotateFrame(self.jointAccel) + lt + lr)

        # Apply drift correction
        self.qMeas = self._vectorObservation(-(self.accelFIFO[1]- l),
                self.magFIFO[1])
        if q.dot(self.qMeas) < 0:
            self.qMeas.negate()
        q = q + 1.0/self.k * dt * (self.qMeas - q)
        dotq = 0.5 * self.qHat * Quaternion(0,*w[0])
        self.qHat = q + dotq * dt
        self.qHat.normalise()
Example #6
0
    def _process(self, g, m):
        z = g / vectors.norm(g)
        x = m - (z * vectors.dot(m, z))
        x /= vectors.norm(x)
        y = vectors.cross(z, x)

        return Quaternion.fromVectors(x, y, z)
Example #7
0
    def _apply(self, refs, meas):

        B = sum(
            [a * np.dot(m, r.T) for a, m, r in zip(self.weights, meas, refs)])
        S = B + B.T
        Z = sum([
            a * vectors.cross(m, r)
            for a, m, r in zip(self.weights, meas, refs)
        ])

        sigma = np.trace(B)
        kappa = ((S[1, 1] * S[2, 2] - S[1, 2] * S[2, 1]) +
                 (S[0, 0] * S[2, 2] - S[0, 2] * S[2, 0]) +
                 (S[0, 0] * S[1, 1] - S[0, 1] * S[1, 0]))
        # where did the above come from and why doesn't this work instead?:
        # kappa = np.trace(np.matrix(S).H)
        delta = np.linalg.det(S)

        if len(refs) == 2:
            # Closed form solution for lambdaMax, see Shuster 1979 eqs 72-3.
            cosTerm = vectors.dot(*refs)[0]*vectors.dot(*meas)[0] + \
                vectors.norm(vectors.cross(*refs))*vectors.norm(vectors.cross(*meas))
            lambdaMax = math.sqrt(
                np.sum(self.weights**2) +
                2 * np.product(self.weights) * cosTerm)
        else:
            # Iterate for lambdaMax, using substitutions from Shuster JAS1290 paper
            # for better numerical accuracy.
            a = sigma**2 - kappa
            b = sigma**2 + np.dot(Z.T, Z)[0, 0]
            c = 8 * np.linalg.det(B)
            d = np.dot(Z.T, np.dot(np.dot(S, S), Z))[0, 0]
            f = lambda l: (l**2 - a) * (l**2 - b) - c * l + c * sigma - d
            fprime = lambda l: 4 * l**3 - 2 * (a + b) * l + c
            lambdaMax = newton(f, 1.0, fprime)

        alpha = lambdaMax**2 - sigma**2 + kappa
        beta = lambdaMax - sigma
        gamma = (lambdaMax + sigma) * alpha - delta
        X = np.dot(alpha * np.identity(3) + beta * S + np.dot(S, S), Z)

        return [gamma] + list(X[0:3, 0])
Example #8
0
    def _apply(self, refs, meas):

        B = sum([a * np.dot(m, r.T) for a,m,r in zip(self.weights, meas, refs)])
        S = B + B.T
        Z = sum([a * vectors.cross(m, r) for a,m,r in zip(self.weights, meas, refs)])

        sigma = np.trace(B)
        kappa = ((S[1,1]*S[2,2] - S[1,2]*S[2,1]) +
                 (S[0,0]*S[2,2] - S[0,2]*S[2,0]) +
                 (S[0,0]*S[1,1] - S[0,1]*S[1,0]))
        # where did the above come from and why doesn't this work instead?:
        # kappa = np.trace(np.matrix(S).H)
        delta = np.linalg.det(S)

        if len(refs) == 2:
            # Closed form solution for lambdaMax, see Shuster 1979 eqs 72-3.
            cosTerm = vectors.dot(*refs)[0]*vectors.dot(*meas)[0] + \
                vectors.norm(vectors.cross(*refs))*vectors.norm(vectors.cross(*meas))
            lambdaMax = math.sqrt(np.sum(self.weights**2) + 2*np.product(self.weights)*cosTerm)
        else:
            # Iterate for lambdaMax, using substitutions from Shuster JAS1290 paper
            # for better numerical accuracy.
            a = sigma**2 - kappa
            b = sigma**2 + np.dot(Z.T, Z)[0,0]
            c = 8 * np.linalg.det(B)
            d = np.dot(Z.T, np.dot(np.dot(S,S), Z))[0,0]
            f = lambda l: (l**2 - a)*(l**2 - b) - c*l + c*sigma - d
            fprime = lambda l: 4*l**3 -2*(a+b)*l + c
            lambdaMax = newton(f, 1.0, fprime)

        alpha = lambdaMax**2 - sigma**2 + kappa
        beta = lambdaMax - sigma
        gamma = (lambdaMax + sigma)*alpha - delta
        X = np.dot(alpha*np.identity(3) + beta*S + np.dot(S,S), Z)

        return [gamma] + list(X[0:3,0])
Example #9
0
    def childAcceleration(self, o, dt):
        """
        Compute acceleration for child joint.

        @param o: Offset of child joint (3x1 L{np.ndarray}).
        """
        w = self.gyroFIFO
        if len(w) < 3:
            return None
        q = self.qHat_minus_1
        a = (w[0] - w[2]) / (2 * dt)
        lt = vectors.cross(a, o)
        lr = vectors.dot(w[1], o) * w[1] - o * vectors.norm(w[1])**2
        l = self.jointAccel + q.rotateVector(lt + lr)
        return l
Example #10
0
    def childAcceleration(self, o, dt):
        """
        Compute acceleration for child joint.

        @param o: Offset of child joint (3x1 L{np.ndarray}).
        """
        w = self.gyroFIFO
        if len(w) < 3:
            return None
        q = self.qHat_minus_1
        a = (w[0] - w[2]) / (2 * dt)
        lt = vectors.cross(a, o)
        lr = vectors.dot(w[1], o) * w[1] - o * vectors.norm(w[1])**2
        l = self.jointAccel + q.rotateVector(lt + lr)
        return l
 def acceleration(self, t):
     """
     Uses the algorithm from Young et al. 2010 'Distributed Estimation
     of Linear Acceleration for Improved Accuracy in Wireless Inertial
     Motion Capture' to calculate linear acceleration from rotational
     velocity and acceleration
     """
     a = self.parent.acceleration(t)
     r = self.parent.rotation(t)
     o = r.rotateVector(self.positionOffset)
     omega = self.parent.rotationalVelocity(t)
     alpha = self.parent.rotationalAcceleration(t)
     lt = vectors.cross(alpha, o)
     lr = vectors.dot(o, omega) * omega - o * vectors.norm(omega)**2
     return a + lt + lr
Example #12
0
    def headingVariation(self, position, t):
        """
        Calculate heading variation due to magnetic distortion.

        @param position: 3xN L{np.ndarray} of position(s).

        @return: Heading variation(s) in degrees at given positions.
        """
        Bx,By,Bz = self(position, t)

        hField = np.vstack((Bx.ravel(),By.ravel()))
        hField /= vectors.norm(hField)
        ref = np.empty_like(hField)
        ref[:] = self.nominalValue[:2].copy()
        ref /= vectors.norm(ref)
        variation = np.arccos(vectors.dot(hField,ref))
        return np.degrees(variation)