Example #1
0
 def test_exclude_classes4(self):
     '''
     exclude Car Pedestrian
     '''
     data_cfg = Test_exclude_classes.TRAINDATA_cfg
     data_cfg["prep"]["@classes_to_exclude"] = ["Car", "Pedestrian"]
     voxelizer = voxelizer_builder.build(Test_exclude_classes.VOXELIZER_cfg)
     target_assigner = target_assigner_builder.build(Test_exclude_classes.TARGETASSIGNER_cfg)
     dataloader = build(data_cfg,
         ext_dict={
             "voxelizer": voxelizer,
             "target_assigner": target_assigner,
             "feature_map_size": [1, 200, 176]
         })
     has1 = False
     has2 = False
     for data in dataloader:
         labels =data["labels"]
         labels1 = labels[labels == 1]
         labels2 = labels[labels == 2]
         if labels1.shape[0] > 0:
             has1 = True
         if labels2.shape[0] > 0:
             has2 = True
     self.assertFalse(has1)
     self.assertFalse(has2)
Example #2
0
    def __init__(self, *args, **kwargs):
        super(Test_kittidata_general, self).__init__(*args, **kwargs)

        data_cfg = Test_kittidata_general.TRAINDATA_cfg
        voxelizer = voxelizer_builder.build(Test_kittidata_general.VOXELIZER_cfg)
        target_assigner = target_assigner_builder.build(Test_kittidata_general.TARGETASSIGNER_cfg)
        dataloader = build(data_cfg,
            ext_dict={
                "voxelizer": voxelizer,
                "target_assigner": target_assigner,
                "feature_map_size": [1, 200, 176]
            })
        self.dataloader = dataloader
        self.data = None
        self.box_coder = target_assigner.box_coder
        for i, data in enumerate(self.dataloader):
            if i == 1:
                self.data = data
                break
            else:
                continue
Example #3
0
 def test_prep_infos1(self):
     '''
     filt
     '''
     data_cfg = Test_prep_infos.TRAINDATA_cfg
     data_cfg["prep_infos"] = {
         "@valid_range": [0, -32, -3, 52.8, 32.0, 1],
         "@target_classes": ["Pedestrian"]
     }
     voxelizer = voxelizer_builder.build(Test_exclude_classes.VOXELIZER_cfg)
     target_assigner = target_assigner_builder.build(Test_exclude_classes.TARGETASSIGNER_cfg)
     dataloader = build(data_cfg,
         ext_dict={
             "voxelizer": voxelizer,
             "target_assigner": target_assigner,
             "feature_map_size": [1, 200, 176]
         })
     for data in dataloader:
         labels =data["labels"]
         labels1 = labels[labels == 1]
         labels2 = labels[labels == 2]
         self.assertTrue(labels2.shape[0] > 0)
Example #4
0
def build_dataloader():
    from incdet3.builders.dataloader_builder import build
    from incdet3.builders import voxelizer_builder, target_assigner_builder
    VOXELIZER_cfg = {
        "type": "VoxelizerV1",
        "@voxel_size": [0.05, 0.05, 0.1],
        "@point_cloud_range": [0, -32, -3, 52.8, 32.0, 1],
        "@max_num_points": 5,
        "@max_voxels": 20000
    }
    TARGETASSIGNER_cfg = {
        "type": "TaskAssignerV1",
        "@classes": ["Car", "Pedestrian", "Cyclist"],
        "@feature_map_sizes": None,
        "@positive_fraction": None,
        "@sample_size": 512,
        "@assign_per_class": True,
        "box_coder": {
            "type": "BoxCoderV1",
            "@custom_ndim": 0
        },
        "class_settings_car": {
            "AnchorGenerator": {
                "type": "AnchorGeneratorBEV",
                "@class_name": "Car",
                "@anchor_ranges": [0, -32, 0, 52.8, 32.0,
                                   0],  # TBD in modify_cfg(cfg)
                "@sizes": [1.6, 3.9, 1.56],  # wlh
                "@rotations": [0, 1.57],
                "@match_threshold": 0.6,
                "@unmatch_threshold": 0.45,
            },
            "SimilarityCalculator": {
                "type": "NearestIoUSimilarity"
            }
        },
        "class_settings_pedestrian": {
            "AnchorGenerator": {
                "type": "AnchorGeneratorBEV",
                "@class_name": "Pedestrian",
                "@anchor_ranges": [0, -32, 0, 52.8, 32.0,
                                   0],  # TBD in modify_cfg(cfg)
                "@sizes": [0.6, 0.8, 1.73],  # wlh
                "@rotations": [0, 1.57],
                "@match_threshold": 0.6,
                "@unmatch_threshold": 0.45,
            },
            "SimilarityCalculator": {
                "type": "NearestIoUSimilarity"
            }
        },
        "class_settings_cyclist": {
            "AnchorGenerator": {
                "type": "AnchorGeneratorBEV",
                "@class_name": "Cyclist",
                "@anchor_ranges": [0, -32, 0, 52.8, 32.0,
                                   0],  # TBD in modify_cfg(cfg)
                "@sizes": [0.6, 0.8, 1.73],  # wlh
                "@rotations": [0, 1.57],
                "@match_threshold": 0.6,
                "@unmatch_threshold": 0.45,
            },
            "SimilarityCalculator": {
                "type": "NearestIoUSimilarity"
            }
        },
    }
    TRAINDATA_cfg = {
        "dataset": "kitti",  # carla
        "training": False,  # set this to false to avoid shuffle
        "batch_size": 1,
        "num_workers": 1,
        "@root_path": "unit_tests/data/test_kittidata",
        "@info_path": "unit_tests/data/test_kittidata/KITTI_infos_train.pkl",
        "@class_names": ["Car", "Pedestrian", "Cyclist"],
        "prep": {
            "@training": True,  # set this to True to return targets
            "@augment_dict": None,
            "@filter_label_dict": {
                "keep_classes": ["Car", "Pedestrian", "Cyclist"],
                "min_num_pts": -1,
                "label_range": [0, -32, -3, 52.8, 32.0, 1],
                # [min_x, min_y, min_z, max_x, max_y, max_z] FIMU
            },
            "@feature_map_size": [1, 200, 176]  # TBD
        }
    }
    data_cfg = TRAINDATA_cfg
    voxelizer = voxelizer_builder.build(VOXELIZER_cfg)
    target_assigner = target_assigner_builder.build(TARGETASSIGNER_cfg)
    dataloader = build(data_cfg,
                       ext_dict={
                           "voxelizer": voxelizer,
                           "target_assigner": target_assigner,
                           "feature_map_size": [1, 200, 176]
                       })
    return dataloader
Example #5
0
            num_workers=data_cfg["num_workers"],
            pin_memory=True,
            collate_fn=merge_batch,
            worker_init_fn=_worker_init_fn,
            drop_last=False)
    return dataloader


if __name__ == "__main__":
    from incdet3.data.carladataset import CarlaDataset
    from incdet3.configs.dev_cfg import cfg
    from incdet3.builders import voxelizer_builder, target_assigner_builder
    from tqdm import tqdm
    data_cfg = cfg.TRAINDATA
    voxelizer = voxelizer_builder.build(cfg.VOXELIZER)
    print(voxelizer.grid_size)
    target_assigner = target_assigner_builder.build(cfg.TARGETASSIGNER)
    dataloader = build(data_cfg,
                       ext_dict={
                           "voxelizer": voxelizer,
                           "target_assigner": target_assigner,
                           "feature_map_size": [1, 200, 176]
                       })
    for data in dataloader:
        data = example_convert_to_torch(data)
        print(data.keys())
        print(type(data["voxels"]))
    # from det3.utils.utils import save_pickle
    # save_path = "./unit_tests/data/test_build_model_and_init.pkl"
    # save_pickle(data, save_path)
Example #6
0
 def test_filt_label_by_range(self):
     def limit_period_torch(val, offset=0.5, period=np.pi):
         return val - torch.floor(val / period + offset) * period
     data_cfg = Test_prep_infos.TRAINDATA_cfg
     voxelizer = voxelizer_builder.build(Test_exclude_classes.VOXELIZER_cfg)
     target_assigner = target_assigner_builder.build(Test_exclude_classes.TARGETASSIGNER_cfg)
     dataloader = build(data_cfg,
         ext_dict={
             "voxelizer": voxelizer,
             "target_assigner": target_assigner,
             "feature_map_size": [1, 200, 176]
         })
     box_coder = target_assigner.box_coder
     import torch
     import torch.nn as nn
     from det3.methods.second.ops.torch_ops import rotate_nms
     from det3.dataloader.carladata import CarlaObj, CarlaLabel
     from incdet3.utils.utils import filt_label_by_range
     for data in dataloader:
         tag = data["metadata"][0]["tag"]
         if tag != "000006":
             continue
         label = data["metadata"][0]["label"]
         cls_pred = torch.from_numpy(data["labels"]).cuda().float()
         cls_pred *= (cls_pred >= 0).float()
         cls_pred = cls_pred.long()
         cls_pred = nn.functional.one_hot(cls_pred, num_classes=2+1)
         cls_pred = cls_pred[..., 1:]
         anchors = torch.from_numpy(data["anchors"]).cuda().float()
         box_pred = torch.from_numpy(data["reg_targets"]).cuda().float()
         box_pred = box_coder.decode(box_pred, anchors)
         for box_preds, cls_preds in zip(box_pred, cls_pred):
             box_preds = box_preds.float()
             cls_preds = cls_preds.float()
             total_scores = cls_preds
             nms_func = rotate_nms
             top_scores, top_labels = torch.max(
                 total_scores, dim=-1)
             top_scores_keep = top_scores >= 0.5
             top_scores = top_scores.masked_select(top_scores_keep)
             box_preds = box_preds[top_scores_keep]
             top_labels = top_labels[top_scores_keep]
             boxes_for_nms = box_preds[:, [0, 1, 3, 4, 6]]
             selected = nms_func(
                 boxes_for_nms,
                 top_scores,
                 pre_max_size=1000,
                 post_max_size=1000,
                 iou_threshold=0.3,
             )
             selected_boxes = box_preds[selected]
             selected_labels = top_labels[selected]
             selected_scores = top_scores[selected]
             box_preds = selected_boxes
             scores = selected_scores
             label_preds = selected_labels
             final_box_preds = box_preds
             final_scores = scores
             final_labels = label_preds
             predictions_dict = {
                 "box3d_lidar": final_box_preds,
                 "scores": final_scores,
                 "label_preds": label_preds,
             }
             label_est = KittiLabel()
             calib = KittiCalib(f"unit_tests/data/test_kittidata/training/calib/{tag}.txt").read_calib_file()
             for box3d_lidar, label_preds, score in zip(
                     predictions_dict["box3d_lidar"],
                     predictions_dict["label_preds"],
                     predictions_dict["scores"]):
                 obj = KittiObj()
                 obj.type = "Car" if label_preds == 0 else "Pedestrian"
                 xyzwlhry_Flidar = box3d_lidar.cpu().numpy().flatten()
                 bcenter_Flidar = xyzwlhry_Flidar[:3].reshape(-1, 3)
                 bcenter_Fcam = calib.lidar2leftcam(bcenter_Flidar)
                 obj.x, obj.y, obj.z = bcenter_Fcam.flatten()
                 obj.w, obj.l, obj.h, obj.ry = xyzwlhry_Flidar[3:]
                 obj.truncated = 0
                 obj.occluded = 0
                 obj.alpha = 0
                 obj.bbox_l = 0
                 obj.bbox_t = 0
                 obj.bbox_r = 0
                 obj.bbox_b = 0
                 label_est.add_obj(obj)
             label_est.current_frame = "Cam2"
             label_filt = filt_label_by_range(label_est, valid_range=[20, -35.2, -3, 52.8, 12.85, -0.26], calib=calib)
             self.assertTrue(len(label_filt) == 1)