Example #1
0
def train_top_model():

    # load top model architecture
    top_model, _, _ = create_top_model(num_classes=500) 
    top_model.compile(optimizer=optimizers.Adam(),
                loss='categorical_crossentropy', 
                metrics=['accuracy',metrics.top_k_categorical_accuracy])

    best_val_loss = 100

    f = open('console_dumps/{}.txt'.format(exp_name),'w')

    unpickled_train = pickle.load(open('cache/parts_train.p','rb'))
    unpickled_valid = pickle.load(open('cache/parts_validation.p','rb'))
    #unpickled_test = pickle.load(open('cache/parts_test.p','rb'))

    for i in range(epochs):
        time_start = time.time()
        train_generator = utils.img_parts_generator(part_file_name, train_data_dir, batch_size=5000, bottleneck_file='bottleneck/bottleneck_60_train.npy', unpickled=unpickled_train)
        val_generator = utils.img_parts_generator(part_file_name, validation_data_dir, batch_size=5000, bottleneck_file='bottleneck/bottleneck_60_validation.npy', unpickled=unpickled_valid)
        j = 0
        train_eval = []
        print('Training')
        for inp, label in train_generator:
            hist = top_model.fit(inp, label, verbose=0, batch_size=400)
            res = [hist.history['loss'][0], hist.history['acc'][0]]
            train_eval.append(res)
            #print("Epoch: {}/{} Batch (train): {}/{} train_l: {:.4f} train_acc: {:.4f}".format(i+1,epochs,j+1,42320/batch_size, res[0], res[1]))
            j += 1
        # find mean of loss and acc
        train_eval = np.mean(train_eval, axis=0)
        
        val_eval = []
        j = 0
        print('Evaluating validation set')
        for inp, label in val_generator:
            res = top_model.evaluate(inp, label, verbose=0, batch_size=400)
            #print("Epoch: {}/{} Batch (valid): {}/{} val_l: {:.4f} val_acc: {:.4f}".format(i+1,epochs,j+1,3000/batch_size, res[0], res[1]))
            val_eval.append(res)
            j += 1
            if j==5:
                break
        val_eval = np.mean(val_eval, axis=0)
        if val_eval[0] < best_val_loss:
            #print('Saving weights')
            best_val_loss = val_eval[0]
            top_model.save_weights('models/{}_{}_{:.4f}.hdf5'.format(exp_name,i+1,round(best_val_loss)))
        time_taken = time.time() - time_start
        log = 'Epoch: {}, train_l: {:.4f}, train_a: {:.4f}, val_l: {:.4f}, val_a: {:.4f}, time: {:.4f}\n'.format(i+1,train_eval[0], train_eval[1], val_eval[0],val_eval[1], time_taken)
        f.write(log)
        print(log)
    f.close()
Example #2
0
def train_top_model():
    # get mapping of label id (0...499) to label string
    label_mapping = utils.get_label_mapping_from_file('train_labels.txt')
    
    # load bottlenecks
    print('Train')
    train_data = np.load(open('bottleneck/bottleneck_features_train.npy', 'rb'))
    print(train_data.shape)
    train_labels = utils.get_labels_from_file('train_labels.txt')
    print(len(train_labels))

    print('Validation')
    validation_data = np.load(open('bottleneck/bottleneck_features_validation.npy', 'rb'))
    print(validation_data.shape)
    val_size_per_class = 6
    validation_labels = get_fixed_labels(val_size_per_class)
    
    print('Test')
    test_data = np.load(open('bottleneck/bottleneck_features_test.npy', 'rb'))
    print(test_data.shape)
    test_size_per_class = 9
    test_labels = get_fixed_labels(test_size_per_class)

    epochs = 20

    tensorboard_callback = TensorBoard(log_dir='./logs/top_model/', histogram_freq=0, write_graph=True, write_images=False)
    checkpoint_callback = ModelCheckpoint('./models/top_model_weights.{epoch:02d}-{val_acc:.2f}.hdf5', monitor='val_acc', verbose=0, save_best_only=True, save_weights_only=False, mode='auto')

    # load top model architecture
    top_model, x, top_model_inputs = create_top_model()
    
    top_model.compile(optimizer=optimizers.Adam(),
        loss='categorical_crossentropy', metrics=['accuracy'])

    history_model = top_model.fit(train_data, train_labels,
              epochs=epochs,
              batch_size=batch_size,
              verbose=1,
              validation_data=(validation_data, validation_labels),
              callbacks = [tensorboard_callback, checkpoint_callback])

    pandas.DataFrame(history_model.history).to_csv('./history/top_model.csv')
    

    ev = top_model.evaluate(test_data,test_labels, batch_size=batch_size, verbose=1)
    print(ev)
Example #3
0
def train_top_model():
    exp_name = 'top_cropped'

    # load bottlenecks
    print('Train')
    train_data = np.load(open('bottleneck/cropped_60_train.npy', 'rb'))
    print(train_data.shape)
    train_labels = utils.get_labels_from_file('train_labels.txt')
    print(len(train_labels))

    print('Validation')
    validation_data = np.load(
        open('bottleneck/cropped_60_validation.npy', 'rb'))
    print(validation_data.shape)
    val_size_per_class = 6
    validation_labels = get_fixed_labels(val_size_per_class)

    epochs = 20

    tensorboard_callback = TensorBoard(log_dir='./logs/' + exp_name + '/',
                                       histogram_freq=0,
                                       write_graph=True,
                                       write_images=False)
    checkpoint_callback = ModelCheckpoint('./models/' + exp_name +
                                          '.{epoch:02d}-{val_acc:.2f}.hdf5',
                                          monitor='val_acc',
                                          verbose=0,
                                          save_best_only=True,
                                          save_weights_only=False,
                                          mode='auto')

    # load top model architecture
    top_model, x, top_model_inputs = create_top_model()

    top_model.compile(optimizer=optimizers.Adam(),
                      loss='categorical_crossentropy',
                      metrics=['accuracy', metrics.top_k_categorical_accuracy])

    history_model = top_model.fit(
        train_data,
        train_labels,
        epochs=epochs,
        batch_size=batch_size,
        verbose=1,
        validation_data=(validation_data, validation_labels),
        callbacks=[tensorboard_callback, checkpoint_callback])
Example #4
0
def train_top_model():

    # load top model architecture
    top_model, _, _ = create_top_model(
        num_classes=4,
        activation=None,
        weights='models/v2_top_bb_30_28.0000.hdf5')
    top_model.compile(optimizer=optimizers.Adam(),
                      loss='mean_absolute_error',
                      metrics=['accuracy'])

    print(top_model.summary())

    bottlenecks_train = utils.load_bottlenecks(bottleneck_dir +
                                               'bottleneck_60_train.npy')
    bottlenecks_valid = utils.load_bottlenecks(bottleneck_dir +
                                               'bottleneck_60_validation.npy')

    best_val_loss = 100
    f = open('console_dumps/{}.txt'.format(exp_name), 'w')

    unpickled_train = pickle.load(open('cache/bb_train.p', 'rb'))
    unpickled_valid = pickle.load(open('cache/bb_validation.p', 'rb'))

    for i in range(epochs):
        time_start = time.time()
        train_generator = utils.img_parts_generator(
            part_file_name,
            'train/',
            batch_size=5000,
            bottlenecks=bottlenecks_train,
            unpickled=unpickled_train,
            bb_only=True)
        val_generator = utils.img_parts_generator(
            part_file_name,
            'validation/',
            batch_size=5000,
            bottlenecks=bottlenecks_valid,
            unpickled=unpickled_valid,
            bb_only=True)

        train_eval = []  # stores metrics of training iterations
        #        print('Training')
        for inp, label in train_generator:
            hist = top_model.fit(inp, label, verbose=0, batch_size=400)
            res = [hist.history['loss'][0], hist.history['acc'][0]]
            train_eval.append(res)
        # find mean of loss and acc
        train_eval = np.mean(train_eval, axis=0)

        val_eval = []  # stores metrics of validation iterations
        j = 0
        #        print('Evaluating validation set')
        for inp, label in val_generator:
            res = top_model.evaluate(inp, label, verbose=0, batch_size=400)
            #print("Epoch: {}/{} Batch (valid): {}/{} val_l: {:.4f} val_acc: {:.4f}".format(i+1,epochs,j+1,3000/batch_size, res[0], res[1]))
            val_eval.append(res)
            j += 1
            #if j==5:
            #    break
        val_eval = np.mean(val_eval, axis=0)

        # save weights if current loss beats best loss
        if val_eval[0] < best_val_loss:
            #print('Saving weights')
            best_val_loss = val_eval[0]
            top_model.save_weights('models/{}_{}_{:.4f}.hdf5'.format(
                exp_name, i + 1, round(best_val_loss)))
        time_taken = time.time() - time_start
        log = 'Epoch: {}, train_l: {:.4f}, train_a: {:.4f}, val_l: {:.4f}, val_a: {:.4f}, time: {:.4f}\n'.format(
            i + 1, train_eval[0], train_eval[1], val_eval[0], val_eval[1],
            time_taken)
        f.write(log)
        print(log)
    f.close()