Example #1
0
def declare_BSSN_gridfunctions_if_not_declared_already():
    # Step 2: Register all needed BSSN gridfunctions.

    # Declare as globals all variables that may be
    # used outside this function
    global hDD, aDD, lambdaU, vetU, betU, trK, cf, alpha

    #   Check to see if this function has already been called.
    #   If so, do not register the gridfunctions again!
    for i in range(len(gri.glb_gridfcs_list)):
        if "hDD00" in gri.glb_gridfcs_list[i].name:
            hDD = ixp.declarerank2("hDD", "sym01")
            aDD = ixp.declarerank2("aDD", "sym01")
            lambdaU = ixp.declarerank1("lambdaU")
            vetU = ixp.declarerank1("vetU")
            betU = ixp.declarerank1("betU")
            trK, cf, alpha = sp.symbols('trK cf alpha', real=True)
            return hDD, aDD, lambdaU, vetU, betU, trK, cf, alpha

    # Step 2.a: Register indexed quantities, using ixp.register_... functions
    hDD = ixp.register_gridfunctions_for_single_rank2("EVOL", "hDD", "sym01")
    aDD = ixp.register_gridfunctions_for_single_rank2("EVOL", "aDD", "sym01")
    lambdaU = ixp.register_gridfunctions_for_single_rank1("EVOL", "lambdaU")
    vetU = ixp.register_gridfunctions_for_single_rank1("EVOL", "vetU")
    betU = ixp.register_gridfunctions_for_single_rank1("EVOL", "betU")

    # Step 2.b: Register scalar quantities, using gri.register_gridfunctions()
    trK, cf, alpha = gri.register_gridfunctions("EVOL", ["trK", "cf", "alpha"])

    return hDD, aDD, lambdaU, vetU, betU, trK, cf, alpha
Example #2
0
def generate_everything_for_UnitTesting():
    # First define hydrodynamical quantities
    u4U = ixp.declarerank1("u4U", DIM=4)
    rho_b, P, epsilon = sp.symbols('rho_b P epsilon', real=True)

    # Then ADM quantities
    gammaDD = ixp.declarerank2("gammaDD", "sym01", DIM=3)
    KDD = ixp.declarerank2("KDD", "sym01", DIM=3)
    betaU = ixp.declarerank1("betaU", DIM=3)
    alpha = sp.symbols('alpha', real=True)

    # First compute stress-energy tensor T4UU and T4UD:
    compute_T4UU(gammaDD, betaU, alpha, rho_b, P, epsilon, u4U)
    compute_T4UD(gammaDD, betaU, alpha, T4UU)

    # Next sqrt(gamma)
    compute_sqrtgammaDET(gammaDD)

    # Compute conservative variables in terms of primitive variables
    compute_rho_star(alpha, sqrtgammaDET, rho_b, u4U)
    compute_tau_tilde(alpha, sqrtgammaDET, T4UU, rho_star)
    compute_S_tildeD(alpha, sqrtgammaDET, T4UD)

    # Then compute v^i from u^mu
    compute_vU_from_u4U__no_speed_limit(u4U)

    # Next compute fluxes of conservative variables
    compute_rho_star_fluxU(vU, rho_star)
    compute_tau_tilde_fluxU(alpha, sqrtgammaDET, vU, T4UU, rho_star)
    compute_S_tilde_fluxUD(alpha, sqrtgammaDET, T4UD)

    # Then declare derivatives & compute g4DD_zerotimederiv_dD
    gammaDD_dD = ixp.declarerank3("gammaDD_dD", "sym01", DIM=3)
    betaU_dD = ixp.declarerank2("betaU_dD", "nosym", DIM=3)
    alpha_dD = ixp.declarerank1("alpha_dD", DIM=3)
    compute_g4DD_zerotimederiv_dD(gammaDD, betaU, alpha, gammaDD_dD, betaU_dD,
                                  alpha_dD)

    # Then compute source terms on tau_tilde and S_tilde equations
    compute_s_source_term(KDD, betaU, alpha, sqrtgammaDET, alpha_dD, T4UU)
    compute_S_tilde_source_termD(alpha, sqrtgammaDET, g4DD_zerotimederiv_dD,
                                 T4UU)

    # Then compute the 4-velocities in terms of an input Valencia 3-velocity testValenciavU[i]
    testValenciavU = ixp.declarerank1("testValenciavU", DIM=3)
    u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(
        alpha, betaU, gammaDD, testValenciavU)

    # Finally compute the 4-velocities in terms of an input 3-velocity testvU[i] = u^i/u^0
    testvU = ixp.declarerank1("testvU", DIM=3)
    u4U_in_terms_of_vU__rescale_vU_by_applying_speed_limit(
        alpha, betaU, gammaDD, testvU)
Example #3
0
def ScalarField_Tmunu():

    global T4UU

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    #    The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    Bq.BSSN_basic_tensors()
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Step 1.g: Define ADM quantities in terms of BSSN quantities
    BtoA.ADM_in_terms_of_BSSN()
    gammaDD = BtoA.gammaDD
    gammaUU = BtoA.gammaUU

    # Step 1.h: Define scalar field quantitites
    sf_dD = ixp.declarerank1("sf_dD")
    Pi = sp.Symbol("sfM", real=True)

    # Step 2a: Set up \partial^{t}\varphi = Pi/alpha
    sf4dU = ixp.zerorank1(DIM=4)
    sf4dU[0] = Pi / alpha

    # Step 2b: Set up \partial^{i}\varphi = -Pi*beta^{i}/alpha + gamma^{ij}\partial_{j}\varphi
    for i in range(DIM):
        sf4dU[i + 1] = -Pi * betaU[i] / alpha
        for j in range(DIM):
            sf4dU[i + 1] += gammaUU[i][j] * sf_dD[j]

    # Step 2c: Set up \partial^{i}\varphi\partial_{i}\varphi = -Pi**2 + gamma^{ij}\partial_{i}\varphi\partial_{j}\varphi
    sf4d2 = -Pi**2
    for i in range(DIM):
        for j in range(DIM):
            sf4d2 += gammaUU[i][j] * sf_dD[i] * sf_dD[j]

    # Step 3a: Setting up g^{\mu\nu}
    ADMg.g4UU_ito_BSSN_or_ADM("ADM",
                              gammaDD=gammaDD,
                              betaU=betaU,
                              alpha=alpha,
                              gammaUU=gammaUU)
    g4UU = ADMg.g4UU

    # Step 3b: Setting up T^{\mu\nu} for a massless scalar field
    T4UU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            T4UU[mu][nu] = sf4dU[mu] * sf4dU[nu] - g4UU[mu][nu] * sf4d2 / 2
Example #4
0
def GiRaFFE_NRPy_Afield_flux(Ccodesdir):
    cmd.mkdir(Ccodesdir)
    # Write out the code to a file.

    gammaDD = ixp.declarerank2("gammaDD", "sym01", DIM=3)
    betaU = ixp.declarerank1("betaU", DIM=3)
    alpha = sp.sympify("alpha")

    for flux_dirn in range(3):
        chsp.find_cmax_cmin(flux_dirn, gammaDD, betaU, alpha)
        Ccode_kernel = outputC([chsp.cmax, chsp.cmin], ["cmax", "cmin"],
                               "returnstring",
                               params="outCverbose=False,CSE_sorting=none")
        Ccode_kernel = Ccode_kernel.replace("cmax",
                                            "*cmax").replace("cmin", "*cmin")
        Ccode_kernel = Ccode_kernel.replace("betaU0", "betaUi").replace(
            "betaU1", "betaUi").replace("betaU2", "betaUi")

        with open(
                os.path.join(Ccodesdir,
                             "compute_cmax_cmin_dirn" + str(flux_dirn) + ".h"),
                "w") as file:
            file.write(Ccode_kernel)

    with open(os.path.join(Ccodesdir, name + ".h"), "w") as file:
        file.write(body)
def write_out_functions_for_StildeD_source_term(outdir,outCparams,gammaDD,betaU,alpha,ValenciavU,BU,sqrt4pi):
    generate_memory_access_code()
    # First, we declare some dummy tensors that we will use for the codegen.
    gammaDDdD  = ixp.declarerank3("gammaDDdD","sym01",DIM=3)
    betaUdD = ixp.declarerank2("betaUdD","nosym",DIM=3)
    alphadD = ixp.declarerank1("alphadD",DIM=3)

    # We need to rerun a few of these functions with the reset lists to make sure these functions
    # don't cheat by using analytic expressions
    GRHD.compute_sqrtgammaDET(gammaDD)
    GRHD.u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(alpha, betaU, gammaDD, ValenciavU)
    GRFFE.compute_smallb4U(gammaDD, betaU, alpha, GRHD.u4U_ito_ValenciavU, BU, sqrt4pi)
    GRFFE.compute_smallbsquared(gammaDD, betaU, alpha, GRFFE.smallb4U)
    GRFFE.compute_TEM4UU(gammaDD,betaU,alpha, GRFFE.smallb4U, GRFFE.smallbsquared,GRHD.u4U_ito_ValenciavU)
    GRHD.compute_g4DD_zerotimederiv_dD(gammaDD,betaU,alpha, gammaDDdD,betaUdD,alphadD)
    GRHD.compute_S_tilde_source_termD(alpha, GRHD.sqrtgammaDET,GRHD.g4DD_zerotimederiv_dD, GRFFE.TEM4UU)
    for i in range(3):
        desc = "Adds the source term to StildeD"+str(i)+"."
        name = "calculate_StildeD"+str(i)+"_source_term"
        outCfunction(
            outfile  = os.path.join(outdir,name+".h"), desc=desc, name=name,
            params   ="const paramstruct *params,const REAL *auxevol_gfs, REAL *rhs_gfs",
            body     = general_access \
                      +metric_deriv_access[i]\
                      +outputC(GRHD.S_tilde_source_termD[i],"Stilde_rhsD"+str(i),"returnstring",params=outCparams).replace("IDX4","IDX4S")\
                      +write_final_quantity[i],
            loopopts ="InteriorPoints",
            rel_path_for_Cparams=os.path.join("../"))
Example #6
0
def BSSN_source_terms_for_BSSN_constraints(custom_T4UU=None):
    global sourceterm_H, sourceterm_MU

    # Step 4.a: Call BSSN_source_terms_ito_T4UU to get SDD, SD, S, & rho
    if custom_T4UU == "unrescaled BSSN source terms already given":
        SDD = ixp.declarerank2("SDD", "sym01")
        SD = ixp.declarerank1("SD")
        S = sp.symbols("S", real=True)
        rho = sp.symbols("rho", real=True)
    else:
        SDD, SD, S, rho = stress_energy_source_terms_ito_T4UU_and_ADM_or_BSSN_metricvars(
            "BSSN", custom_T4UU)
    PI = par.Cparameters("REAL", thismodule, ["PI"],
                         "3.14159265358979323846264338327950288")

    # Step 4.b: Add source term to the Hamiltonian constraint H
    sourceterm_H = -16 * PI * rho

    # Step 4.c: Add source term to the momentum constraint M^i
    # Step 4.c.i: Compute gammaUU in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AitoB
    AitoB.ADM_in_terms_of_BSSN()  # Provides gammaUU
    # Step 4.c.ii: Raise S_i
    SU = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            SU[i] += AitoB.gammaUU[i][j] * SD[j]
    # Step 4.c.iii: Add source term to momentum constraint & rescale:
    sourceterm_MU = ixp.zerorank1()
    for i in range(3):
        sourceterm_MU[i] = -8 * PI * SU[i] / rfm.ReU[i]
Example #7
0
def generate_everything_for_UnitTesting():
    # First define hydrodynamical quantities
    u4U = ixp.declarerank1("u4U", DIM=4)
    B_tildeU = ixp.declarerank1("B_tildeU", DIM=3)

    # Then ADM quantities
    gammaDD = ixp.declarerank2("gammaDD", "sym01", DIM=3)
    betaU = ixp.declarerank1("betaU", DIM=3)
    alpha = sp.symbols('alpha', real=True)

    # Then numerical constant
    sqrt4pi = sp.symbols('sqrt4pi', real=True)

    # First compute stress-energy tensor T4UU and T4UD:
    import GRHD.equations as GHeq
    GHeq.compute_sqrtgammaDET(gammaDD)
    compute_B_notildeU(GHeq.sqrtgammaDET, B_tildeU)
    compute_smallb4U(gammaDD, betaU, alpha, u4U, B_notildeU, sqrt4pi)
    compute_smallb4U_with_driftvU_for_FFE(gammaDD, betaU, alpha, u4U,
                                          B_notildeU, sqrt4pi)
    compute_smallbsquared(gammaDD, betaU, alpha, smallb4U)

    compute_TEM4UU(gammaDD, betaU, alpha, smallb4U, smallbsquared, u4U)
    compute_TEM4UD(gammaDD, betaU, alpha, TEM4UU)

    # Compute conservative variables in terms of primitive variables
    GHeq.compute_S_tildeD(alpha, GHeq.sqrtgammaDET, TEM4UD)
    global S_tildeD
    S_tildeD = GHeq.S_tildeD

    # Next compute fluxes of conservative variables
    GHeq.compute_S_tilde_fluxUD(alpha, GHeq.sqrtgammaDET, TEM4UD)
    global S_tilde_fluxUD
    S_tilde_fluxUD = GHeq.S_tilde_fluxUD

    # Then declare derivatives & compute g4DDdD
    gammaDD_dD = ixp.declarerank3("gammaDD_dD", "sym01", DIM=3)
    betaU_dD = ixp.declarerank2("betaU_dD", "nosym", DIM=3)
    alpha_dD = ixp.declarerank1("alpha_dD", DIM=3)
    GHeq.compute_g4DD_zerotimederiv_dD(gammaDD, betaU, alpha, gammaDD_dD,
                                       betaU_dD, alpha_dD)

    # Finally compute source terms on tau_tilde and S_tilde equations
    GHeq.compute_S_tilde_source_termD(alpha, GHeq.sqrtgammaDET,
                                      GHeq.g4DD_zerotimederiv_dD, TEM4UU)
    global S_tilde_source_termD
    S_tilde_source_termD = GHeq.S_tilde_source_termD
def betU_vetU(betaU, BU):
    global vetU, betU

    if betaU == None:
        betaU = ixp.declarerank1("betaU")
    if BU == None:
        BU = ixp.declarerank1("BU")

    if rfm.have_already_called_reference_metric_function == False:
        print(
            "BSSN.BSSN_in_terms_of_ADM.bet_vet(): Must call reference_metric() first!"
        )
        sys.exit(1)
    vetU = ixp.zerorank1()
    betU = ixp.zerorank1()
    for i in range(DIM):
        vetU[i] = betaU[i] / rfm.ReU[i]
        betU[i] = BU[i] / rfm.ReU[i]
def ScalarWaveCurvilinear_RHSs():
    # Step 1: Get the spatial dimension, defined in the
    #         NRPy+ "grid" module. With reference metrics,
    #         this must be set to 3 or fewer.
    DIM = par.parval_from_str("DIM")

    # Step 2: Set up the reference metric and
    #         quantities derived from the
    #         reference metric.
    rfm.reference_metric()

    # Step 3: Compute the contracted Christoffel symbols:
    contractedGammahatU = ixp.zerorank1()
    for k in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                contractedGammahatU[k] += rfm.ghatUU[i][j] * rfm.GammahatUDD[k][i][j]

    # Step 4: Register gridfunctions that are needed as input
    #         to the scalar wave RHS expressions.
    uu, vv = gri.register_gridfunctions("EVOL",["uu","vv"])

    # Step 5a: Declare the rank-1 indexed expression \partial_{i} u,
    #          Derivative variables like these must have an underscore
    #          in them, so the finite difference module can parse the
    #          variable name properly.
    uu_dD = ixp.declarerank1("uu_dD")

    # Step 5b: Declare the rank-2 indexed expression \partial_{ij} u,
    #          which is symmetric about interchange of indices i and j
    #          Derivative variables like these must have an underscore
    #          in them, so the finite difference module can parse the
    #          variable name properly.
    uu_dDD = ixp.declarerank2("uu_dDD","sym01")

    # Step 7: Specify RHSs as global variables,
    #         to enable access outside this
    #         function (e.g., for C code output)
    global uu_rhs,vv_rhs

    # Step 6: Define right-hand sides for the evolution.
    # Step 6a: uu_rhs = vv:
    uu_rhs = vv
    # Step 6b: The right-hand side of the \partial_t v equation
    #          is given by:
    #          \hat{g}^{ij} \partial_i \partial_j u - \hat{\Gamma}^i \partial_i u.
    #          ^^^^^^^^^^^^ PART 1 ^^^^^^^^^^^^^^^^ ^^^^^^^^^^ PART 2 ^^^^^^^^^^^
    vv_rhs = 0
    for i in range(DIM):
        # PART 2:
        vv_rhs -= contractedGammahatU[i]*uu_dD[i]
        for j in range(DIM):
            # PART 1:
            vv_rhs += rfm.ghatUU[i][j]*uu_dDD[i][j]

    vv_rhs *= wavespeed*wavespeed
Example #10
0
def BSSN_source_terms_for_BSSN_RHSs(custom_T4UU=None):
    global sourceterm_trK_rhs, sourceterm_a_rhsDD, sourceterm_lambda_rhsU, sourceterm_Lambdabar_rhsU

    # Step 3.a: Call BSSN_source_terms_ito_T4UU to get SDD, SD, S, & rho

    if custom_T4UU == "unrescaled BSSN source terms already given":
        SDD = ixp.declarerank2("SDD", "sym01")
        SD = ixp.declarerank1("SD")
        S = sp.symbols("S", real=True)
        rho = sp.symbols("rho", real=True)
    else:
        SDD, SD, S, rho = stress_energy_source_terms_ito_T4UU_and_ADM_or_BSSN_metricvars(
            "BSSN", custom_T4UU)
    PI = par.Cparameters("REAL", thismodule, ["PI"],
                         "3.14159265358979323846264338327950288")
    alpha = sp.symbols("alpha", real=True)

    # Step 3.b: trK_rhs
    sourceterm_trK_rhs = 4 * PI * alpha * (rho + S)

    # Step 3.c: Abar_rhsDD:
    # Step 3.c.i: Compute trace-free part of S_{ij}:
    import BSSN.BSSN_quantities as Bq
    Bq.BSSN_basic_tensors()  # Sets gammabarDD
    gammabarUU, dummydet = ixp.symm_matrix_inverter3x3(
        Bq.gammabarDD)  # Set gammabarUU
    tracefree_SDD = ixp.zerorank2()
    for i in range(3):
        for j in range(3):
            tracefree_SDD[i][j] = SDD[i][j]
    for i in range(3):
        for j in range(3):
            for k in range(3):
                for m in range(3):
                    tracefree_SDD[i][j] += -sp.Rational(1, 3) * Bq.gammabarDD[
                        i][j] * gammabarUU[k][m] * SDD[k][m]
    # Step 3.c.ii: Define exp_m4phi = e^{-4 phi}
    Bq.phi_and_derivs()
    # Step 3.c.iii: Evaluate stress-energy part of AbarDD's RHS
    sourceterm_a_rhsDD = ixp.zerorank2()
    for i in range(3):
        for j in range(3):
            Abar_rhsDDij = -8 * PI * alpha * Bq.exp_m4phi * tracefree_SDD[i][j]
            sourceterm_a_rhsDD[i][j] = Abar_rhsDDij / rfm.ReDD[i][j]

    # Step 3.d: Stress-energy part of Lambdabar_rhsU = stressenergy_Lambdabar_rhsU
    sourceterm_Lambdabar_rhsU = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            sourceterm_Lambdabar_rhsU[
                i] += -16 * PI * alpha * gammabarUU[i][j] * SD[j]
    sourceterm_lambda_rhsU = ixp.zerorank1()
    for i in range(3):
        sourceterm_lambda_rhsU[i] = sourceterm_Lambdabar_rhsU[i] / rfm.ReU[i]
def BrillLindquist(ComputeADMGlobalsOnly=False,
                   include_NRPy_basic_defines_and_pickle=False):
    # Step 2: Setting up Brill-Lindquist initial data

    # Step 2.a: Set spatial dimension (must be 3 for BSSN)
    DIM = 3
    par.set_parval_from_str("grid::DIM", DIM)

    global Cartxyz, gammaCartDD, KCartDD, alphaCart, betaCartU, BCartU
    Cartxyz = ixp.declarerank1("Cartxyz")

    # Step 2.b: Set psi, the conformal factor:
    psi = sp.sympify(1)
    psi += BH1_mass / (2 * sp.sqrt((Cartxyz[0] - BH1_posn_x)**2 +
                                   (Cartxyz[1] - BH1_posn_y)**2 +
                                   (Cartxyz[2] - BH1_posn_z)**2))
    psi += BH2_mass / (2 * sp.sqrt((Cartxyz[0] - BH2_posn_x)**2 +
                                   (Cartxyz[1] - BH2_posn_y)**2 +
                                   (Cartxyz[2] - BH2_posn_z)**2))

    # Step 2.c: Set all needed ADM variables in Cartesian coordinates
    gammaCartDD = ixp.zerorank2()
    KCartDD = ixp.zerorank2()  # K_{ij} = 0 for these initial data
    for i in range(DIM):
        gammaCartDD[i][i] = psi**4

    alphaCart = 1 / psi**2
    betaCartU = ixp.zerorank1(
    )  # We generally choose \beta^i = 0 for these initial data
    BCartU = ixp.zerorank1(
    )  # We generally choose B^i = 0 for these initial data

    if ComputeADMGlobalsOnly == True:
        return

    cf,hDD,lambdaU,aDD,trK,alpha,vetU,betU = \
        AtoB.Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear("Cartesian",Cartxyz,
                                                                    gammaCartDD,KCartDD,alphaCart,betaCartU,BCartU)

    import BSSN.BSSN_ID_function_string as bIDf
    # Generates initial_data() C function & stores to outC_function_dict["initial_data"]
    bIDf.BSSN_ID_function_string(
        cf,
        hDD,
        lambdaU,
        aDD,
        trK,
        alpha,
        vetU,
        betU,
        include_NRPy_basic_defines=include_NRPy_basic_defines_and_pickle)
    if include_NRPy_basic_defines_and_pickle:
        return pickle_NRPy_env()
Example #12
0
def BrillLindquist(ComputeADMGlobalsOnly=False):
    global Cartxyz, gammaCartDD, KCartDD, alphaCart, betaCartU, BCartU

    # Step 2: Setting up Brill-Lindquist initial data
    thismodule = "Brill-Lindquist"
    BH1_posn_x, BH1_posn_y, BH1_posn_z = par.Cparameters(
        "REAL", thismodule, ["BH1_posn_x", "BH1_posn_y", "BH1_posn_z"])
    BH1_mass = par.Cparameters("REAL", thismodule, ["BH1_mass"])
    BH2_posn_x, BH2_posn_y, BH2_posn_z = par.Cparameters(
        "REAL", thismodule, ["BH2_posn_x", "BH2_posn_y", "BH2_posn_z"])
    BH2_mass = par.Cparameters("REAL", thismodule, ["BH2_mass"])

    # Step 2.a: Set spatial dimension (must be 3 for BSSN)
    DIM = 3
    par.set_parval_from_str("grid::DIM", DIM)

    global Cartxyz, gammaCartDD, KCartDD, alphaCart, betaCartU, BCartU
    Cartxyz = ixp.declarerank1("Cartxyz")

    # Step 2.b: Set psi, the conformal factor:
    psi = sp.sympify(1)
    psi += BH1_mass / (2 * sp.sqrt((Cartxyz[0] - BH1_posn_x)**2 +
                                   (Cartxyz[1] - BH1_posn_y)**2 +
                                   (Cartxyz[2] - BH1_posn_z)**2))
    psi += BH2_mass / (2 * sp.sqrt((Cartxyz[0] - BH2_posn_x)**2 +
                                   (Cartxyz[1] - BH2_posn_y)**2 +
                                   (Cartxyz[2] - BH2_posn_z)**2))

    # Step 2.c: Set all needed ADM variables in Cartesian coordinates
    gammaCartDD = ixp.zerorank2()
    KCartDD = ixp.zerorank2()  # K_{ij} = 0 for these initial data
    for i in range(DIM):
        gammaCartDD[i][i] = psi**4

    alphaCart = 1 / psi**2
    betaCartU = ixp.zerorank1(
    )  # We generally choose \beta^i = 0 for these initial data
    BCartU = ixp.zerorank1(
    )  # We generally choose B^i = 0 for these initial data

    if ComputeADMGlobalsOnly == True:
        return

    cf,hDD,lambdaU,aDD,trK,alpha,vetU,betU = \
        AtoB.Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear("Cartesian",Cartxyz,
                                                                    gammaCartDD,KCartDD,alphaCart,betaCartU,BCartU)

    global returnfunction
    returnfunction = bIDf.BSSN_ID_function_string(cf, hDD, lambdaU, aDD, trK,
                                                  alpha, vetU, betU)
Example #13
0
def calculate_E_i_flux(flux_dirn,inputs_provided=True,alpha_face=None,gamma_faceDD=None,beta_faceU=None,\
                       Valenciav_rU=None,B_rU=None,Valenciav_lU=None,B_lU=None):
    if not inputs_provided:
        # declare all variables
        alpha_face = sp.symbols(alpha_face)
        beta_faceU = ixp.declarerank1("beta_faceU")
        gamma_faceDD = ixp.declarerank2("gamma_faceDD", "sym01")
        Valenciav_rU = ixp.declarerank1("Valenciav_rU")
        B_rU = ixp.declarerank1("B_rU")
        Valenciav_lU = ixp.declarerank1("Valenciav_lU")
        B_lU = ixp.declarerank1("B_lU")
    global E_fluxD
    E_fluxD = ixp.zerorank1()
    for field_comp in range(3):
        find_cmax_cmin(field_comp, gamma_faceDD, beta_faceU, alpha_face)
        calculate_flux_and_state_for_Induction(field_comp,flux_dirn, gamma_faceDD,beta_faceU,alpha_face,\
                                               Valenciav_rU,B_rU)
        Fr = F
        Ur = U
        calculate_flux_and_state_for_Induction(field_comp,flux_dirn, gamma_faceDD,beta_faceU,alpha_face,\
                                               Valenciav_lU,B_lU)
        Fl = F
        Ul = U
        E_fluxD[field_comp] += HLLE_solver(cmax, cmin, Fr, Fl, Ur, Ul)
def setup_ADM_quantities(inputvars):
    if inputvars == "ADM":
        gammaDD = ixp.declarerank2("gammaDD", "sym01")
        betaU = ixp.declarerank1("betaU")
        alpha = sp.symbols("alpha", real=True)
    elif inputvars == "BSSN":
        import BSSN.ADM_in_terms_of_BSSN as AitoB

        # Construct gamma_{ij} in terms of cf & gammabar_{ij}
        AitoB.ADM_in_terms_of_BSSN()
        gammaDD = AitoB.gammaDD
        # Next construct beta^i in terms of vet^i and reference metric quantities
        import BSSN.BSSN_quantities as Bq

        Bq.BSSN_basic_tensors()
        betaU = Bq.betaU
        alpha = sp.symbols("alpha", real=True)
    else:
        print("inputvars = " + str(inputvars) + " not supported. Please choose ADM or BSSN.")
        sys.exit(1)
    return gammaDD,betaU,alpha
def add_to_Cfunction_dict__AD_gauge_term_psi6Phi_fin_diff(includes=None):
    xi_damping = par.Cparameters("REAL",thismodule,"xi_damping",0.1)
    GRFFE.compute_psi6Phi_rhs_damping_term(alpha,psi6Phi,xi_damping)

    AevolParen_dD = ixp.declarerank1("AevolParen_dD",DIM=3)
    PhievolParenU_dD = ixp.declarerank2("PhievolParenU_dD","nosym",DIM=3)

    A_rhsD = ixp.zerorank1()
    psi6Phi_rhs = GRFFE.psi6Phi_damping

    for i in range(3):
        A_rhsD[i] += -AevolParen_dD[i]
        psi6Phi_rhs += -PhievolParenU_dD[i][i]

    # Add Kreiss-Oliger dissipation to the GRFFE RHSs:
    # psi6Phi_dKOD = ixp.declarerank1("psi6Phi_dKOD")
    # AD_dKOD    = ixp.declarerank2("AD_dKOD","nosym")
    # for i in range(3):
    #     psi6Phi_rhs += diss_strength*psi6Phi_dKOD[i]*rfm.ReU[i] # ReU[i] = 1/scalefactor_orthog_funcform[i]
    #     for j in range(3):
    #         A_rhsD[j] += diss_strength*AD_dKOD[j][i]*rfm.ReU[i] # ReU[i] = 1/scalefactor_orthog_funcform[i]

    RHSs_to_print = [
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD0"),rhs=A_rhsD[0]),
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD1"),rhs=A_rhsD[1]),
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD2"),rhs=A_rhsD[2]),
                     lhrh(lhs=gri.gfaccess("rhs_gfs","psi6Phi"),rhs=psi6Phi_rhs),
                    ]

    desc = "Calculate AD gauge term and psi6Phi RHSs"
    name = "calculate_AD_gauge_psi6Phi_RHSs"
    params ="const paramstruct *params,const REAL *in_gfs,const REAL *auxevol_gfs,REAL *rhs_gfs"
    body     = fin.FD_outputC("returnstring",RHSs_to_print,params=outCparams)
    loopopts ="InteriorPoints"
    add_to_Cfunction_dict(
        includes=includes,
        desc=desc,
        name=name, params=params,
        body=body, loopopts=loopopts)
    outC_function_dict[name] = outC_function_dict[name].replace("= NGHOSTS","= NGHOSTS_A2B").replace("NGHOSTS+Nxx0","Nxx_plus_2NGHOSTS0-NGHOSTS_A2B").replace("NGHOSTS+Nxx1","Nxx_plus_2NGHOSTS1-NGHOSTS_A2B").replace("NGHOSTS+Nxx2","Nxx_plus_2NGHOSTS2-NGHOSTS_A2B")
def GiRaFFE_NRPy_P2C(gammaDD, betaU, alpha, ValenciavU, BU, sqrt4pi):
    # After recalculating the 3-velocity, we need to update the poynting flux:
    # We'll reset the Valencia velocity, since this will be part of a second call to outCfunction.
    ValenciavU = ixp.declarerank1("ValenciavU", DIM=3)

    # First compute stress-energy tensor T4UU and T4UD:
    GRHD.compute_sqrtgammaDET(gammaDD)

    GRHD.u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(
        alpha, betaU, gammaDD, ValenciavU)
    GRFFE.compute_smallb4U(gammaDD, betaU, alpha, GRHD.u4U_ito_ValenciavU, BU,
                           sqrt4pi)
    GRFFE.compute_smallbsquared(gammaDD, betaU, alpha, GRFFE.smallb4U)

    GRFFE.compute_TEM4UU(gammaDD, betaU, alpha, GRFFE.smallb4U,
                         GRFFE.smallbsquared, GRHD.u4U_ito_ValenciavU)
    GRFFE.compute_TEM4UD(gammaDD, betaU, alpha, GRFFE.TEM4UU)

    # Compute conservative variables in terms of primitive variables
    GRHD.compute_S_tildeD(alpha, GRHD.sqrtgammaDET, GRFFE.TEM4UD)
    global StildeD
    StildeD = GRHD.S_tildeD
Example #17
0
def phi_and_derivs():
    # Step 9.a: Declare as globals all expressions that may be used
    #           outside this function, declare BSSN gridfunctions
    #           if not defined already, and set DIM=3.
    global phi_dD, phi_dupD, phi_dDD, exp_m4phi, phi_dBarD, phi_dBarDD
    hDD, aDD, lambdaU, vetU, betU, trK, cf, alpha = declare_BSSN_gridfunctions_if_not_declared_already(
    )
    DIM = 3

    # GammabarUDD is used below, defined in
    #    gammabar__inverse_and_derivs()
    gammabar__inverse_and_derivs()

    # Step 9.a.i: Define partial derivatives of \phi in terms of evolved quantity "cf":
    cf_dD = ixp.declarerank1("cf_dD")
    cf_dupD = ixp.declarerank1("cf_dupD")  # Needed for \partial_t \phi next.
    cf_dDD = ixp.declarerank2("cf_dDD", "sym01")
    phi_dD = ixp.zerorank1()
    phi_dupD = ixp.zerorank1()
    phi_dDD = ixp.zerorank2()
    exp_m4phi = sp.sympify(0)

    # Step 9.a.ii: Assuming cf=phi, define exp_m4phi, phi_dD,
    #              phi_dupD (upwind finite-difference version of phi_dD), and phi_DD
    if par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi":
        for i in range(DIM):
            phi_dD[i] = cf_dD[i]
            phi_dupD[i] = cf_dupD[i]
            for j in range(DIM):
                phi_dDD[i][j] = cf_dDD[i][j]
        exp_m4phi = sp.exp(-4 * cf)

    # Step 9.a.iii: Assuming cf=W=e^{-2 phi}, define exp_m4phi, phi_dD,
    #               phi_dupD (upwind finite-difference version of phi_dD), and phi_DD
    if par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W":
        # \partial_i W = \partial_i (e^{-2 phi}) = -2 e^{-2 phi} \partial_i phi
        # -> \partial_i phi = -\partial_i cf / (2 cf)
        for i in range(DIM):
            phi_dD[i] = -cf_dD[i] / (2 * cf)
            phi_dupD[i] = -cf_dupD[i] / (2 * cf)
            for j in range(DIM):
                # \partial_j \partial_i phi = - \partial_j [\partial_i cf / (2 cf)]
                #                           = - cf_{,ij} / (2 cf) + \partial_i cf \partial_j cf / (2 cf^2)
                phi_dDD[i][j] = (-cf_dDD[i][j] +
                                 cf_dD[i] * cf_dD[j] / cf) / (2 * cf)
        exp_m4phi = cf * cf

    # Step 9.a.iv: Assuming cf=chi=e^{-4 phi}, define exp_m4phi, phi_dD,
    #              phi_dupD (upwind finite-difference version of phi_dD), and phi_DD
    if par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "chi":
        # \partial_i chi = \partial_i (e^{-4 phi}) = -4 e^{-4 phi} \partial_i phi
        # -> \partial_i phi = -\partial_i cf / (4 cf)
        for i in range(DIM):
            phi_dD[i] = -cf_dD[i] / (4 * cf)
            phi_dupD[i] = -cf_dupD[i] / (4 * cf)
            for j in range(DIM):
                # \partial_j \partial_i phi = - \partial_j [\partial_i cf / (4 cf)]
                #                           = - cf_{,ij} / (4 cf) + \partial_i cf \partial_j cf / (4 cf^2)
                phi_dDD[i][j] = (-cf_dDD[i][j] +
                                 cf_dD[i] * cf_dD[j] / cf) / (4 * cf)
        exp_m4phi = cf

    # Step 9.a.v: Error out if unsupported EvolvedConformalFactor_cf choice is made:
    cf_choice = par.parval_from_str(
        "BSSN.BSSN_quantities::EvolvedConformalFactor_cf")
    if not (cf_choice == "phi" or cf_choice == "W" or cf_choice == "chi"):
        print("Error: EvolvedConformalFactor_cf == " + par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") +
              " unsupported!")
        exit(1)

    # Step 9.b: Define phi_dBarD = phi_dD (since phi is a scalar) and phi_dBarDD (covariant derivative)
    #          \bar{D}_i \bar{D}_j \phi = \phi_{;\bar{i}\bar{j}} = \bar{D}_i \phi_{,j}
    #                                   = \phi_{,ij} - \bar{\Gamma}^k_{ij} \phi_{,k}
    phi_dBarD = phi_dD
    phi_dBarDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            phi_dBarDD[i][j] = phi_dDD[i][j]
            for k in range(DIM):
                phi_dBarDD[i][j] += -GammabarUDD[k][i][j] * phi_dD[k]
Example #18
0
def BSSN_RHSs():
    # Step 1.c: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    global have_already_called_BSSN_RHSs_function  # setting to global enables other modules to see updated value.
    have_already_called_BSSN_RHSs_function = True

    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    import BSSN.BSSN_quantities as Bq
    Bq.BSSN_basic_tensors()
    gammabarDD = Bq.gammabarDD
    AbarDD = Bq.AbarDD
    LambdabarU = Bq.LambdabarU
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Step 1.f: Import all neeeded rescaled BSSN tensors:
    aDD = Bq.aDD
    cf = Bq.cf
    lambdaU = Bq.lambdaU

    # Step 2.a.i: Import derivative expressions for betaU defined in the BSSN.BSSN_quantities module:
    Bq.betaU_derivs()
    betaU_dD = Bq.betaU_dD
    betaU_dDD = Bq.betaU_dDD
    # Step 2.a.ii: Import derivative expression for gammabarDD
    Bq.gammabar__inverse_and_derivs()
    gammabarDD_dupD = Bq.gammabarDD_dupD

    # Step 2.a.iii: First term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # \beta^k \bar{\gamma}_{ij,k} + \beta^k_{,i} \bar{\gamma}_{kj} + \beta^k_{,j} \bar{\gamma}_{ik}
    gammabar_rhsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                gammabar_rhsDD[i][j] += betaU[k] * gammabarDD_dupD[i][j][k] + betaU_dD[k][i] * gammabarDD[k][j] \
                                        + betaU_dD[k][j] * gammabarDD[i][k]

    # Step 2.b.i: First import \bar{A}_{ij} = AbarDD[i][j], and its contraction trAbar = \bar{A}^k_k
    #           from BSSN.BSSN_quantities
    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()
    trAbar = Bq.trAbar

    # Step 2.b.ii: Import detgammabar quantities from BSSN.BSSN_quantities:
    Bq.detgammabar_and_derivs()
    detgammabar = Bq.detgammabar
    detgammabar_dD = Bq.detgammabar_dD

    # Step 2.b.ii: Compute the contraction \bar{D}_k \beta^k = \beta^k_{,k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}}
    Dbarbetacontraction = sp.sympify(0)
    for k in range(DIM):
        Dbarbetacontraction += betaU_dD[k][
            k] + betaU[k] * detgammabar_dD[k] / (2 * detgammabar)

    # Step 2.b.iii: Second term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # \frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right )
    for i in range(DIM):
        for j in range(DIM):
            gammabar_rhsDD[i][j] += sp.Rational(2, 3) * gammabarDD[i][j] * (
                alpha * trAbar - Dbarbetacontraction)

    # Step 2.c: Third term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # -2 \alpha \bar{A}_{ij}
    for i in range(DIM):
        for j in range(DIM):
            gammabar_rhsDD[i][j] += -2 * alpha * AbarDD[i][j]

    # Step 3.a: First term of \partial_t \bar{A}_{i j}:
    # \beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik}

    # First define AbarDD_dupD:
    AbarDD_dupD = Bq.AbarDD_dupD  # From Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()

    Abar_rhsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Abar_rhsDD[i][j] += betaU[k] * AbarDD_dupD[i][j][k] + betaU_dD[k][i] * AbarDD[k][j] \
                                    + betaU_dD[k][j] * AbarDD[i][k]

    # Step 3.b: Second term of \partial_t \bar{A}_{i j}:
    # - (2/3) \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} {\bar{A}^{k}}_{j} + \alpha \bar{A}_{i j} K
    gammabarUU = Bq.gammabarUU  # From Bq.gammabar__inverse_and_derivs()
    AbarUD = Bq.AbarUD  # From Bq.AbarUU_AbarUD_trAbar()
    for i in range(DIM):
        for j in range(DIM):
            Abar_rhsDD[i][j] += -sp.Rational(2, 3) * AbarDD[i][
                j] * Dbarbetacontraction + alpha * AbarDD[i][j] * trK
            for k in range(DIM):
                Abar_rhsDD[i][j] += -2 * alpha * AbarDD[i][k] * AbarUD[k][j]

    # Step 3.c.i: Define partial derivatives of \phi in terms of evolved quantity "cf":
    Bq.phi_and_derivs()
    phi_dD = Bq.phi_dD
    phi_dupD = Bq.phi_dupD
    phi_dDD = Bq.phi_dDD
    exp_m4phi = Bq.exp_m4phi
    phi_dBarD = Bq.phi_dBarD  # phi_dBarD = Dbar_i phi = phi_dD (since phi is a scalar)
    phi_dBarDD = Bq.phi_dBarDD  # phi_dBarDD = Dbar_i Dbar_j phi (covariant derivative)

    # Step 3.c.ii: Define RbarDD
    Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    RbarDD = Bq.RbarDD

    # Step 3.c.iii: Define first and second derivatives of \alpha, as well as
    #         \bar{D}_i \bar{D}_j \alpha, which is defined just like phi
    alpha_dD = ixp.declarerank1("alpha_dD")
    alpha_dDD = ixp.declarerank2("alpha_dDD", "sym01")
    alpha_dBarD = alpha_dD
    alpha_dBarDD = ixp.zerorank2()
    GammabarUDD = Bq.GammabarUDD  # Defined in Bq.gammabar__inverse_and_derivs()
    for i in range(DIM):
        for j in range(DIM):
            alpha_dBarDD[i][j] = alpha_dDD[i][j]
            for k in range(DIM):
                alpha_dBarDD[i][j] += -GammabarUDD[k][i][j] * alpha_dD[k]

    # Step 3.c.iv: Define the terms in curly braces:
    curlybrackettermsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            curlybrackettermsDD[i][j] = -2 * alpha * phi_dBarDD[i][j] + 4 * alpha * phi_dBarD[i] * phi_dBarD[j] \
                                        + 2 * alpha_dBarD[i] * phi_dBarD[j] \
                                        + 2 * alpha_dBarD[j] * phi_dBarD[i] \
                                        - alpha_dBarDD[i][j] + alpha * RbarDD[i][j]

    # Step 3.c.v: Compute the trace:
    curlybracketterms_trace = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            curlybracketterms_trace += gammabarUU[i][j] * curlybrackettermsDD[
                i][j]

    # Step 3.c.vi: Third and final term of Abar_rhsDD[i][j]:
    for i in range(DIM):
        for j in range(DIM):
            Abar_rhsDD[i][j] += exp_m4phi * (
                curlybrackettermsDD[i][j] -
                sp.Rational(1, 3) * gammabarDD[i][j] * curlybracketterms_trace)

    # Step 4: Right-hand side of conformal factor variable "cf". Supported
    #          options include: cf=phi, cf=W=e^(-2*phi) (default), and cf=chi=e^(-4*phi)
    # \partial_t phi = \left[\beta^k \partial_k \phi \right] <- TERM 1
    #                  + \frac{1}{6} \left (\bar{D}_{k} \beta^{k} - \alpha K \right ) <- TERM 2
    global cf_rhs
    cf_rhs = sp.Rational(1, 6) * (Dbarbetacontraction - alpha * trK)  # Term 2
    for k in range(DIM):
        cf_rhs += betaU[k] * phi_dupD[k]  # Term 1

    # Next multiply to convert phi_rhs to cf_rhs.
    if par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi":
        pass  # do nothing; cf_rhs = phi_rhs
    elif par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W":
        cf_rhs *= -2 * cf  # cf_rhs = -2*cf*phi_rhs
    elif par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "chi":
        cf_rhs *= -4 * cf  # cf_rhs = -4*cf*phi_rhs
    else:
        print("Error: EvolvedConformalFactor_cf == " + par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") +
              " unsupported!")
        exit(1)

    # Step 5: right-hand side of trK (trace of extrinsic curvature):
    # \partial_t K = \beta^k \partial_k K <- TERM 1
    #           + \frac{1}{3} \alpha K^{2} <- TERM 2
    #           + \alpha \bar{A}_{i j} \bar{A}^{i j} <- TERM 3
    #           - - e^{-4 \phi} (\bar{D}_{i} \bar{D}^{i} \alpha + 2 \bar{D}^{i} \alpha \bar{D}_{i} \phi ) <- TERM 4
    global trK_rhs
    # TERM 2:
    trK_rhs = sp.Rational(1, 3) * alpha * trK * trK
    trK_dupD = ixp.declarerank1("trK_dupD")
    for i in range(DIM):
        # TERM 1:
        trK_rhs += betaU[i] * trK_dupD[i]
    for i in range(DIM):
        for j in range(DIM):
            # TERM 4:
            trK_rhs += -exp_m4phi * gammabarUU[i][j] * (
                alpha_dBarDD[i][j] + 2 * alpha_dBarD[j] * phi_dBarD[i])
    AbarUU = Bq.AbarUU  # From Bq.AbarUU_AbarUD_trAbar()
    for i in range(DIM):
        for j in range(DIM):
            # TERM 3:
            trK_rhs += alpha * AbarDD[i][j] * AbarUU[i][j]

    # Step 6: right-hand side of \partial_t \bar{\Lambda}^i:
    # \partial_t \bar{\Lambda}^i = \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k <- TERM 1
    #                            + \bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i} <- TERM 2
    #                            + \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j} <- TERM 3
    #                            + \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j} <- TERM 4
    #                            - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \partial_{j} \phi) <- TERM 5
    #                            + 2 \alpha \bar{A}^{j k} \Delta_{j k}^{i} <- TERM 6
    #                            - \frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K <- TERM 7

    # Step 6.a: Term 1 of \partial_t \bar{\Lambda}^i: \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k
    # First we declare \bar{\Lambda}^i and \bar{\Lambda}^i_{,j} in terms of \lambda^i and \lambda^i_{,j}
    global LambdabarU_dupD  # Used on the RHS of the Gamma-driving shift conditions
    LambdabarU_dupD = ixp.zerorank2()
    lambdaU_dupD = ixp.declarerank2("lambdaU_dupD", "nosym")
    for i in range(DIM):
        for j in range(DIM):
            LambdabarU_dupD[i][j] = lambdaU_dupD[i][j] * rfm.ReU[i] + lambdaU[
                i] * rfm.ReUdD[i][j]

    global Lambdabar_rhsU  # Used on the RHS of the Gamma-driving shift conditions
    Lambdabar_rhsU = ixp.zerorank1()
    for i in range(DIM):
        for k in range(DIM):
            Lambdabar_rhsU[i] += betaU[k] * LambdabarU_dupD[i][k] - betaU_dD[
                i][k] * LambdabarU[k]  # Term 1

    # Step 6.b: Term 2 of \partial_t \bar{\Lambda}^i = \bar{\gamma}^{jk} (Term 2a + Term 2b + Term 2c)
    # Term 2a: \bar{\gamma}^{jk} \beta^i_{,kj}
    Term2aUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Term2aUDD[i][j][k] += betaU_dDD[i][k][j]
    # Term 2b: \hat{\Gamma}^i_{mk,j} \beta^m + \hat{\Gamma}^i_{mk} \beta^m_{,j}
    #          + \hat{\Gamma}^i_{dj}\beta^d_{,k} - \hat{\Gamma}^d_{kj} \beta^i_{,d}
    Term2bUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    Term2bUDD[i][j][k] += rfm.GammahatUDDdD[i][m][k][j] * betaU[m] \
                                          + rfm.GammahatUDD[i][m][k] * betaU_dD[m][j] \
                                          + rfm.GammahatUDD[i][m][j] * betaU_dD[m][k] \
                                          - rfm.GammahatUDD[m][k][j] * betaU_dD[i][m]
    # Term 2c: \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} \beta^m - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} \beta^m
    Term2cUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    for d in range(DIM):
                        Term2cUDD[i][j][k] += (rfm.GammahatUDD[i][d][j] * rfm.GammahatUDD[d][m][k] \
                                               - rfm.GammahatUDD[d][k][j] * rfm.GammahatUDD[i][m][d]) * betaU[m]

    Lambdabar_rhsUpieceU = ixp.zerorank1()

    # Put it all together to get Term 2:
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Lambdabar_rhsU[i] += gammabarUU[j][k] * (Term2aUDD[i][j][k] +
                                                         Term2bUDD[i][j][k] +
                                                         Term2cUDD[i][j][k])
                Lambdabar_rhsUpieceU[i] += gammabarUU[j][k] * (
                    Term2aUDD[i][j][k] + Term2bUDD[i][j][k] +
                    Term2cUDD[i][j][k])

    # Step 6.c: Term 3 of \partial_t \bar{\Lambda}^i:
    #    \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j}
    DGammaU = Bq.DGammaU  # From Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    for i in range(DIM):
        Lambdabar_rhsU[i] += sp.Rational(
            2, 3) * DGammaU[i] * Dbarbetacontraction  # Term 3

    # Step 6.d: Term 4 of \partial_t \bar{\Lambda}^i:
    #           \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j}
    detgammabar_dDD = Bq.detgammabar_dDD  # From Bq.detgammabar_and_derivs()
    Dbarbetacontraction_dBarD = ixp.zerorank1()
    for k in range(DIM):
        for m in range(DIM):
            Dbarbetacontraction_dBarD[m] += betaU_dDD[k][k][m] + \
                                            (betaU_dD[k][m] * detgammabar_dD[k] +
                                             betaU[k] * detgammabar_dDD[k][m]) / (2 * detgammabar) \
                                            - betaU[k] * detgammabar_dD[k] * detgammabar_dD[m] / (
                                                        2 * detgammabar * detgammabar)
    for i in range(DIM):
        for m in range(DIM):
            Lambdabar_rhsU[i] += sp.Rational(
                1, 3) * gammabarUU[i][m] * Dbarbetacontraction_dBarD[m]

    # Step 6.e: Term 5 of \partial_t \bar{\Lambda}^i:
    #           - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \alpha \partial_{j} \phi)
    for i in range(DIM):
        for j in range(DIM):
            Lambdabar_rhsU[i] += -2 * AbarUU[i][j] * (alpha_dD[j] -
                                                      6 * alpha * phi_dD[j])

    # Step 6.f: Term 6 of \partial_t \bar{\Lambda}^i:
    #           2 \alpha \bar{A}^{j k} \Delta^{i}_{j k}
    DGammaUDD = Bq.DGammaUDD  # From RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Lambdabar_rhsU[
                    i] += 2 * alpha * AbarUU[j][k] * DGammaUDD[i][j][k]

    # Step 6.g: Term 7 of \partial_t \bar{\Lambda}^i:
    #           -\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K
    trK_dD = ixp.declarerank1("trK_dD")
    for i in range(DIM):
        for j in range(DIM):
            Lambdabar_rhsU[i] += -sp.Rational(
                4, 3) * alpha * gammabarUU[i][j] * trK_dD[j]

    # Step 7: Rescale the RHS quantities so that the evolved
    #         variables are smooth across coord singularities
    global h_rhsDD, a_rhsDD, lambda_rhsU
    h_rhsDD = ixp.zerorank2()
    a_rhsDD = ixp.zerorank2()
    lambda_rhsU = ixp.zerorank1()
    for i in range(DIM):
        lambda_rhsU[i] = Lambdabar_rhsU[i] / rfm.ReU[i]
        for j in range(DIM):
            h_rhsDD[i][j] = gammabar_rhsDD[i][j] / rfm.ReDD[i][j]
            a_rhsDD[i][j] = Abar_rhsDD[i][j] / rfm.ReDD[i][j]
Example #19
0
def MaxwellCartesian_Evol():
    #Step 0: Set the spatial dimension parameter to 3.
    par.set_parval_from_str("grid::DIM", 3)
    DIM = par.parval_from_str("grid::DIM")

    # Step 1: Set the finite differencing order to 4.
    # (not needed here)
    # par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", 4)

    # Step 2: Register gridfunctions that are needed as input.
    _psi = gri.register_gridfunctions(
        "EVOL", ["psi"])  # lgtm [py/unused-local-variable]

    # Step 3a: Declare the rank-1 indexed expressions E_{i}, A_{i},
    #          and \partial_{i} \psi. Derivative variables like these
    #          must have an underscore in them, so the finite
    #          difference module can parse the variable name properly.
    ED = ixp.register_gridfunctions_for_single_rank1("EVOL", "ED")
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL", "AD")
    psi_dD = ixp.declarerank1("psi_dD")

    ## Step 3b: Declare the conformal metric tensor and its first
    #           derivative. These are needed to find the Christoffel
    #           symbols, which we need for covariant derivatives.
    gammaDD = ixp.register_gridfunctions_for_single_rank2(
        "AUX", "gammaDD", "sym01")  # The AUX or EVOL designation is *not*
    # used in diagnostic modules.
    gammaDD_dD = ixp.declarerank3("gammaDD_dD", "sym01")
    gammaDD_dDD = ixp.declarerank4("gammaDD_dDD", "sym01_sym23")

    gammaUU, detgamma = ixp.symm_matrix_inverter3x3(gammaDD)
    gammaUU_dD = ixp.declarerank3("gammaDD_dD", "sym01")

    # Define the Christoffel symbols
    GammaUDD = ixp.zerorank3(DIM)
    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    GammaUDD[i][k][l] += (sp.Rational(1,2))*gammaUU[i][m]*\
                                         (gammaDD_dD[m][k][l] + gammaDD_dD[m][l][k] - gammaDD_dD[k][l][m])

    # Step 3b: Declare the rank-2 indexed expression \partial_{j} A_{i},
    #          which is not symmetric in its indices.
    #          Derivative variables like these must have an underscore
    #          in them, so the finite difference module can parse the
    #          variable name properly.
    AD_dD = ixp.declarerank2("AD_dD", "nosym")

    # Step 3c: Declare the rank-3 indexed expression \partial_{jk} A_{i},
    #          which is symmetric in the two {jk} indices.
    AD_dDD = ixp.declarerank3("AD_dDD", "sym12")

    # Step 4: Calculate first and second covariant derivatives, and the
    #         necessary contractions.
    # First covariant derivative
    # D_{j} A_{i} = A_{i,j} - \Gamma^{k}_{ij} A_{k}
    AD_dcovD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            AD_dcovD[i][j] = AD_dD[i][j]
            for k in range(DIM):
                AD_dcovD[i][j] -= GammaUDD[k][i][j] * AD[k]

    # First, we must construct the lowered Christoffel symbols:
    # \Gamma_{ijk} = \gamma_{il} \Gamma^l_{jk}
    # And raise the index on A:
    # A^j = \gamma^{ij} A_i
    GammaDDD = ixp.zerorank3()
    AU = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            AU[j] += gammaUU[i][j] * AD[i]
            for k in range(DIM):
                for l in range(DIM):
                    GammaDDD[i][j][k] += gammaDD[i][l] * GammaUDD[l][j][k]

    # Covariant second derivative (the bracketed terms):
    # D_j D^j A_i = \gamma^{jk} [A_{i,jk} - A^l (\gamma_{li,kj} + \gamma_{kl,ij} - \gamma_{ik,lj})
    #               + \Gamma_{lik} (\gamma^{lm} A_{m,j} + A_m \gamma^{lm}{}_{,j})
    #               - (\Gamma^l_{ij} A_{l,k} + \Gamma^l_{jk} A_{i,l})
    #               + (\Gamma^m_{ij} \Gamma^l_{mk} A_l + \Gamma ^m_{jk} \Gamma^l_{im} A_l)
    AD_dcovDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                AD_dcovDD[i][j][k] = AD_dDD[i][j][k]
                for l in range(DIM):
                    # Terms 1 and 3
                    AD_dcovDD[i][j][k] -= AU[l] * (gammaDD_dDD[l][i][k][j] + gammaDD_dDD[k][l][i][j] - \
                                                   gammaDD_dDD[i][k][l][j]) \
                                        + GammaUDD[l][i][j] * AD_dD[l][k] + GammaUDD[l][j][k] * AD_dD[i][l]
                    for m in range(DIM):
                        # Terms 2 and 4
                        AD_dcovDD[i][j][k] += GammaDDD[l][i][k] * (gammaUU[l][m] * AD_dD[m][j] + AD[m] * gammaUU_dD[l][m][j]) \
                                            + GammaUDD[m][i][j] * GammaUDD[l][m][k] * AD[l] \
                                            + GammaUDD[m][j][k] * GammaUDD[l][i][m] * AD[l]

    # Covariant divergence
    # D_{i} A^{i} = \gamma^{ij} D_{j} A_{i}
    DivA = 0
    # Gradient of covariant divergence
    # DivA_dD_{i} = \gamma^{jk} A_{k;\hat{j}\hat{i}}
    DivA_dD = ixp.zerorank1()
    # Covariant Laplacian
    # LapAD_{i} = \gamma^{jk} A_{i;\hat{j}\hat{k}}
    LapAD = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            DivA += gammaUU[i][j] * AD_dcovD[i][j]
            for k in range(DIM):
                DivA_dD[i] += gammaUU[j][k] * AD_dcovDD[k][j][i]
                LapAD[i] += gammaUU[j][k] * AD_dcovDD[i][j][k]

    global ArhsD, ErhsD, psi_rhs
    system = par.parval_from_str("System_to_use")
    if system == "System_I":
        # Step 5: Define right-hand sides for the evolution.
        print("Warning: System I is less stable!")
        ArhsD = ixp.zerorank1()
        ErhsD = ixp.zerorank1()
        for i in range(DIM):
            ArhsD[i] = -ED[i] - psi_dD[i]
            ErhsD[i] = -LapAD[i] + DivA_dD[i]
        psi_rhs = -DivA

    elif system == "System_II":
        # We inherit here all of the definitions from System I, above

        # Step 7a: Register the scalar auxiliary variable \Gamma
        Gamma = gri.register_gridfunctions("EVOL", ["Gamma"])

        # Step 7b: Declare the ordinary gradient \partial_{i} \Gamma
        Gamma_dD = ixp.declarerank1("Gamma_dD")

        # Step 8a: Construct the second covariant derivative of the scalar \psi
        # \psi_{;\hat{i}\hat{j}} = \psi_{,i;\hat{j}}
        #                        = \psi_{,ij} - \Gamma^{k}_{ij} \psi_{,k}
        psi_dDD = ixp.declarerank2("psi_dDD", "sym01")
        psi_dcovDD = ixp.zerorank2()
        for i in range(DIM):
            for j in range(DIM):
                psi_dcovDD[i][j] = psi_dDD[i][j]
                for k in range(DIM):
                    psi_dcovDD[i][j] += -GammaUDD[k][i][j] * psi_dD[k]

        # Step 8b: Construct the covariant Laplacian of \psi
        # Lappsi = ghat^{ij} D_{j} D_{i} \psi
        Lappsi = 0
        for i in range(DIM):
            for j in range(DIM):
                Lappsi += gammaUU[i][j] * psi_dcovDD[i][j]

        # Step 9: Define right-hand sides for the evolution.
        global Gamma_rhs
        ArhsD = ixp.zerorank1()
        ErhsD = ixp.zerorank1()
        for i in range(DIM):
            ArhsD[i] = -ED[i] - psi_dD[i]
            ErhsD[i] = -LapAD[i] + Gamma_dD[i]
        psi_rhs = -Gamma
        Gamma_rhs = -Lappsi

    else:
        print(
            "Invalid choice of system: System_to_use must be either System_I or System_II"
        )

    ED_dD = ixp.declarerank2("ED_dD", "nosym")
    global Cviolation
    Cviolation = gri.register_gridfunctions("AUX", ["Cviolation"])
    Cviolation = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            Cviolation += gammaUU[i][j] * ED_dD[j][i]
            for b in range(DIM):
                Cviolation -= gammaUU[i][j] * GammaUDD[b][i][j] * ED[b]
Example #20
0
def Psi4(specify_tetrad=True):

    global psi4_im_pt, psi4_re_pt

    # Step 1.b: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Import all ADM quantities as written in terms of BSSN quantities
    import BSSN.ADM_in_terms_of_BSSN as AB
    AB.ADM_in_terms_of_BSSN()

    # Step 1.e: Set up tetrad vectors
    if specify_tetrad == True:
        import BSSN.Psi4_tetrads as BP4t
        BP4t.Psi4_tetrads()
        mre4U = BP4t.mre4U
        mim4U = BP4t.mim4U
        n4U = BP4t.n4U
    else:
        # For code validation against NRPy+ psi_4 tutorial module (Tutorial-Psi4.ipynb);
        #   ensures a more complete code validation.
        mre4U = ixp.declarerank1("mre4U", DIM=4)
        mim4U = ixp.declarerank1("mim4U", DIM=4)
        n4U = ixp.declarerank1("n4U", DIM=4)

    # Step 2: Construct the (rank-4) Riemann curvature tensor associated with the ADM 3-metric:
    RDDDD = ixp.zerorank4()
    gammaDDdDD = AB.gammaDDdDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    RDDDD[i][k][l][m] = sp.Rational(1, 2) * \
                                        (gammaDDdDD[i][m][k][l] + gammaDDdDD[k][l][i][m] - gammaDDdDD[i][l][k][m] -
                                         gammaDDdDD[k][m][i][l])

    # ... then we add the term on the right:
    gammaDD = AB.gammaDD
    GammaUDD = AB.GammaUDD

    for i in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for m in range(DIM):
                    for n in range(DIM):
                        for p in range(DIM):
                            RDDDD[i][k][l][m] += gammaDD[n][p] * \
                                                 (GammaUDD[n][k][l] * GammaUDD[p][i][m] - GammaUDD[n][k][m] * GammaUDD[p][i][l])

    # Step 3: Construct the (rank-4) tensor in term 1 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank4term1DDDD = ixp.zerorank4()
    KDD = AB.KDD

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    rank4term1DDDD[i][j][k][l] = RDDDD[i][j][k][
                        l] + KDD[i][k] * KDD[l][j] - KDD[i][l] * KDD[k][j]

    # Step 4: Construct the (rank-3) tensor in term 2 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf
    rank3term2DDD = ixp.zerorank3()
    KDDdD = AB.KDDdD

    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2DDD[j][k][l] = sp.Rational(
                    1, 2) * (KDDdD[j][k][l] - KDDdD[j][l][k])

    # ... then we construct the second term in this sum:
    #  \Gamma^{p}_{j[k} K_{l]p} = \frac{1}{2} (\Gamma^{p}_{jk} K_{lp}-\Gamma^{p}_{jl} K_{kp}):
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                for p in range(DIM):
                    rank3term2DDD[j][k][l] += sp.Rational(
                        1, 2) * (GammaUDD[p][j][k] * KDD[l][p] -
                                 GammaUDD[p][j][l] * KDD[k][p])

    # Finally, we multiply the term by $-8$:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                rank3term2DDD[j][k][l] *= sp.sympify(-8)

    # Step 5: Construct the (rank-2) tensor in term 3 of psi_4 (referring to Eq 5.1 in
    #   Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf

    # Step 5.1: Construct 3-Ricci tensor R_{ij} = gamma^{im} R_{ijml}
    RDD = ixp.zerorank2()
    gammaUU = AB.gammaUU
    for j in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                for m in range(DIM):
                    RDD[j][l] += gammaUU[i][m] * RDDDD[i][j][m][l]

    # Step 5.2: Construct K^p_l = gamma^{pi} K_{il}
    KUD = ixp.zerorank2()
    for p in range(DIM):
        for l in range(DIM):
            for i in range(DIM):
                KUD[p][l] += gammaUU[p][i] * KDD[i][l]

    # Step 5.3: Construct trK = gamma^{ij} K_{ij}
    trK = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            trK += gammaUU[i][j] * KDD[i][j]

    # Next we put these terms together to construct the entire term in parentheses:
    # +4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right),
    rank2term3DD = ixp.zerorank2()
    for j in range(DIM):
        for l in range(DIM):
            rank2term3DD[j][l] = RDD[j][l] + trK * KDD[j][l]
            for p in range(DIM):
                rank2term3DD[j][l] += -KDD[j][p] * KUD[p][l]
    # Finally we multiply by +4:
    for j in range(DIM):
        for l in range(DIM):
            rank2term3DD[j][l] *= sp.sympify(4)

    # Step 6: Construct real & imaginary parts of psi_4
    #         by contracting constituent rank 2, 3, and 4
    #         tensors with input tetrads mre4U, mim4U, & n4U.

    def tetrad_product__Real_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return +n[mu] * Mre[nu] * n[eta] * Mre[delta] - n[mu] * Mim[nu] * n[
            eta] * Mim[delta]

    def tetrad_product__Imag_psi4(n, Mre, Mim, mu, nu, eta, delta):
        return -n[mu] * Mre[nu] * n[eta] * Mim[delta] - n[mu] * Mim[nu] * n[
            eta] * Mre[delta]

    # We split psi_4 into three pieces, to expedite & possibly parallelize C code generation.
    psi4_re_pt = [sp.sympify(0), sp.sympify(0), sp.sympify(0)]
    psi4_im_pt = [sp.sympify(0), sp.sympify(0), sp.sympify(0)]
    # First term:
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    psi4_re_pt[0] += rank4term1DDDD[i][j][
                        k][l] * tetrad_product__Real_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)
                    psi4_im_pt[0] += rank4term1DDDD[i][j][
                        k][l] * tetrad_product__Imag_psi4(
                            n4U, mre4U, mim4U, i + 1, j + 1, k + 1, l + 1)

    # Second term:
    for j in range(DIM):
        for k in range(DIM):
            for l in range(DIM):
                psi4_re_pt[1] += rank3term2DDD[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
                psi4_im_pt[1] += rank3term2DDD[j][k][l] * \
                           sp.Rational(1, 2) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, k + 1, l + 1)
                                                - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, k + 1, l + 1))
    # Third term:
    for j in range(DIM):
        for l in range(DIM):
            psi4_re_pt[2] += rank2term3DD[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Real_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Real_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))
            psi4_im_pt[2] += rank2term3DD[j][l] * \
                       (sp.Rational(1, 4) * (+tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, 0, l + 1)
                                             - tetrad_product__Imag_psi4(n4U, mre4U, mim4U, 0, j + 1, l + 1, 0)
                                             + tetrad_product__Imag_psi4(n4U, mre4U, mim4U, j + 1, 0, l + 1, 0)))
Example #21
0
def GiRaFFE_Higher_Order():
    #Step 1.0: Set the spatial dimension parameter to 3.
    par.set_parval_from_str("grid::DIM", 3)
    DIM = par.parval_from_str("grid::DIM")

    # Step 1.1: Set the finite differencing order to 4.
    #par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", 4)

    thismodule = "GiRaFFE_NRPy"

    # M_PI will allow the C code to substitute the correct value
    M_PI = par.Cparameters("#define", thismodule, "M_PI", "")
    # ADMBase defines the 4-metric in terms of the 3+1 spacetime metric quantities gamma_{ij}, beta^i, and alpha
    gammaDD = ixp.register_gridfunctions_for_single_rank2("AUX",
                                                          "gammaDD",
                                                          "sym01",
                                                          DIM=3)
    betaU = ixp.register_gridfunctions_for_single_rank1("AUX", "betaU", DIM=3)
    alpha = gri.register_gridfunctions("AUX", "alpha")
    # GiRaFFE uses the Valencia 3-velocity and A_i, which are defined in the initial data module(GiRaFFEfood)
    ValenciavU = ixp.register_gridfunctions_for_single_rank1("AUX",
                                                             "ValenciavU",
                                                             DIM=3)
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL", "AD", DIM=3)
    # B^i must be computed at each timestep within GiRaFFE so that the Valencia 3-velocity can be evaluated
    BU = ixp.register_gridfunctions_for_single_rank1("AUX", "BU", DIM=3)

    # <a id='step3'></a>
    #
    # ## Step 1.2: Build the four metric $g_{\mu\nu}$, its inverse $g^{\mu\nu}$ and spatial derivatives $g_{\mu\nu,i}$ from ADM 3+1 quantities $\gamma_{ij}$, $\beta^i$, and $\alpha$
    #
    # $$\label{step3}$$
    # \[Back to [top](#top)\]
    #
    # Notice that the time evolution equation for $\tilde{S}_i$
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}
    # $$
    # contains $\partial_i g_{\mu \nu} = g_{\mu\nu,i}$. We will now focus on evaluating this term.
    #
    # The four-metric $g_{\mu\nu}$ is related to the three-metric $\gamma_{ij}$, index-lowered shift $\beta_i$, and lapse $\alpha$ by
    # $$
    # g_{\mu\nu} = \begin{pmatrix}
    # -\alpha^2 + \beta^k \beta_k & \beta_j \\
    # \beta_i & \gamma_{ij}
    # \end{pmatrix}.
    # $$
    # This tensor and its inverse have already been built by the u0_smallb_Poynting__Cartesian.py module ([documented here](Tutorial-u0_smallb_Poynting-Cartesian.ipynb)), so we can simply load the module and import the variables.

    # Step 1.2: import u0_smallb_Poynting__Cartesian.py to set
    #           the four metric and its inverse. This module also sets b^2 and u^0.
    import u0_smallb_Poynting__Cartesian.u0_smallb_Poynting__Cartesian as u0b
    u0b.compute_u0_smallb_Poynting__Cartesian(gammaDD, betaU, alpha,
                                              ValenciavU, BU)

    betaD = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            betaD[i] += gammaDD[i][j] * betaU[j]

    # We will now pull in the four metric and its inverse.
    import BSSN.ADMBSSN_tofrom_4metric as AB4m  # NRPy+: ADM/BSSN <-> 4-metric conversions
    AB4m.g4DD_ito_BSSN_or_ADM("ADM")
    g4DD = AB4m.g4DD
    AB4m.g4UU_ito_BSSN_or_ADM("ADM")
    g4UU = AB4m.g4UU

    # Next we compute spatial derivatives of the metric, $\partial_i g_{\mu\nu} = g_{\mu\nu,i}$, written in terms of the three-metric, shift, and lapse. Simply taking the derivative of the expression for $g_{\mu\nu}$ above, we find
    # $$
    # g_{\mu\nu,l} = \begin{pmatrix}
    # -2\alpha \alpha_{,l} + \beta^k_{\ ,l} \beta_k + \beta^k \beta_{k,l} & \beta_{i,l} \\
    # \beta_{j,l} & \gamma_{ij,l}
    # \end{pmatrix}.
    # $$
    #
    # Notice the derivatives of the shift vector with its indexed lowered, $\beta_{i,j} = \partial_j \beta_i$. This can be easily computed in terms of the given ADMBase quantities $\beta^i$ and $\gamma_{ij}$ via:
    # \begin{align}
    # \beta_{i,j} &= \partial_j \beta_i \\
    #             &= \partial_j (\gamma_{ik} \beta^k) \\
    #             &= \gamma_{ik} \partial_j\beta^k + \beta^k \partial_j \gamma_{ik} \\
    # \beta_{i,j} &= \gamma_{ik} \beta^k_{\ ,j} + \beta^k \gamma_{ik,j}.
    # \end{align}
    #
    # Since this expression mixes Greek and Latin indices, we will need to store the expressions for each of the three spatial derivatives as separate variables.
    #
    # So, we will first set
    # $$ g_{00,l} = \underbrace{-2\alpha \alpha_{,l}}_{\rm Term\ 1} + \underbrace{\beta^k_{\ ,l} \beta_k}_{\rm Term\ 2} + \underbrace{\beta^k \beta_{k,l}}_{\rm Term\ 3} $$

    # Step 1.2, cont'd: Build spatial derivatives of the four metric
    # Step 1.2.a: Declare derivatives of grid functions. These will be handled by FD_outputC
    alpha_dD = ixp.declarerank1("alpha_dD")
    betaU_dD = ixp.declarerank2("betaU_dD", "nosym")
    gammaDD_dD = ixp.declarerank3("gammaDD_dD", "sym01")

    # Step 1.2.b: These derivatives will be constructed analytically.
    betaDdD = ixp.zerorank2()
    g4DDdD = ixp.zerorank3(DIM=4)

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                # \gamma_{ik} \beta^k_{,j} + \beta^k \gamma_{ik,j}
                betaDdD[i][j] += gammaDD[i][k] * betaU_dD[k][j] + betaU[
                    k] * gammaDD_dD[i][k][j]

    # Step 1.2.c: Set the 00 components
    # Step 1.2.c.i: Term 1: -2\alpha \alpha_{,l}
    for l in range(DIM):
        g4DDdD[0][0][l + 1] = -2 * alpha * alpha_dD[l]

    # Step 1.2.c.ii: Term 2: \beta^k_{\ ,l} \beta_k
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l + 1] += betaU_dD[k][l] * betaD[k]

    # Step 1.2.c.iii: Term 3: \beta^k \beta_{k,l}
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l + 1] += betaU[k] * betaDdD[k][l]

    # Now we will contruct the other components of $g_{\mu\nu,l}$. We will first construct
    # $$ g_{i0,l} = g_{0i,l} = \beta_{i,l}, $$
    # then
    # $$ g_{ij,l} = \gamma_{ij,l} $$

    # Step 1.2.d: Set the i0 and 0j components
    for l in range(DIM):
        for i in range(DIM):
            # \beta_{i,l}
            g4DDdD[i + 1][0][l + 1] = g4DDdD[0][i + 1][l + 1] = betaDdD[i][l]

    #Step 1.2.e: Set the ij components
    for l in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                # \gamma_{ij,l}
                g4DDdD[i + 1][j + 1][l + 1] = gammaDD_dD[i][j][l]

    # <a id='step4'></a>
    #
    # # $T^{\mu\nu}_{\rm EM}$ and its derivatives
    #
    # Now that the metric and its derivatives are out of the way, let's return to the evolution equation for $\tilde{S}_i$,
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}.
    # $$
    # We turn our focus now to $T^j_{{\rm EM} i}$ and its derivatives. To this end, we start by computing $T^{\mu \nu}_{\rm EM}$ (from eq. 27 of [Paschalidis & Shapiro's paper on their GRFFE code](https://arxiv.org/pdf/1310.3274.pdf)):
    #
    # $$\boxed{T^{\mu \nu}_{\rm EM} = b^2 u^{\mu} u^{\nu} + \frac{b^2}{2} g^{\mu \nu} - b^{\mu} b^{\nu}.}$$
    #
    # Notice that $T^{\mu\nu}_{\rm EM}$ is written in terms of
    #
    # * $b^\mu$, the 4-component magnetic field vector, related to the comoving magnetic field vector $B^i_{(u)}$
    # * $u^\mu$, the 4-velocity
    # * $g^{\mu \nu}$, the inverse 4-metric
    #
    # However, $\texttt{GiRaFFE}$ has access to only the following quantities, requiring in the following sections that we write the above quantities in terms of the following ones:
    #
    # * $\gamma_{ij}$, the 3-metric
    # * $\alpha$, the lapse
    # * $\beta^i$, the shift
    # * $A_i$, the vector potential
    # * $B^i$, the magnetic field (we assume only in the grid interior, not the ghost zones)
    # * $\left[\sqrt{\gamma}\Phi\right]$, the zero-component of the vector potential $A_\mu$, times the square root of the determinant of the 3-metric
    # * $v_{(n)}^i$, the Valencia 3-velocity
    # * $u^0$, the zero-component of the 4-velocity
    #
    # ## Step 2.0: $u^i$ and $b^i$ and related quantities
    # $$\label{step4}$$
    # \[Back to [top](#top)\]
    #
    # We begin by importing what we can from u0_smallb_Poynting__Cartesian.py. We will need the four-velocity $u^\mu$, which is related to the Valencia 3-velocity $v^i_{(n)}$ used directly by $\texttt{GiRaFFE}$ (see also [Duez, et al, eqs. 53 and 56](https://arxiv.org/pdf/astro-ph/0503420.pdf))
    # \begin{align}
    # u^i &= u^0 (\alpha v^i_{(n)} - \beta^i), \\
    # u_j &= \alpha u^0 \gamma_{ij} v^i_{(n)},
    # \end{align}
    # and $v^i_{(n)}$ is the Valencia three-velocity. These have already been constructed in terms of the Valencia 3-velocity and other 3+1 ADM quantities by the u0_smallb_Poynting__Cartesian.py module, so we can simply import these variables:

    # Step 2.0: u^i, b^i, and related quantities
    # Step 2.0.a: import the four-velocity, as written in terms of the Valencia 3-velocity
    global uD, uU
    uD = ixp.register_gridfunctions_for_single_rank1("AUX", "uD")
    uU = ixp.register_gridfunctions_for_single_rank1("AUX", "uU")
    u4upperZero = gri.register_gridfunctions("AUX", "u4upperZero")

    for i in range(DIM):
        uD[i] = u0b.uD[i].subs(u0b.u0, u4upperZero)
        uU[i] = u0b.uU[i].subs(u0b.u0, u4upperZero)

    # We also need the magnetic field 4-vector $b^{\mu}$, which is related to the magnetic field by [eqs. 23, 24, and 31 in Duez, et al](https://arxiv.org/pdf/astro-ph/0503420.pdf):
    # \begin{align}
    # b^0 &= \frac{1}{\sqrt{4\pi}} B^0_{\rm (u)} = \frac{u_j B^j}{\sqrt{4\pi}\alpha}, \\
    # b^i &= \frac{1}{\sqrt{4\pi}} B^i_{\rm (u)} = \frac{B^i + (u_j B^j) u^i}{\sqrt{4\pi}\alpha u^0}, \\
    # \end{align}
    # where $B^i$ is the variable tracked by the HydroBase thorn in the Einstein Toolkit. Again, these have already been built by the u0_smallb_Poynting__Cartesian.py module, so we can simply import the variables.

    # Step 2.0.b: import the small b terms
    smallb4U = ixp.zerorank1(DIM=4)
    smallb4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        smallb4U[mu] = u0b.smallb4U[mu].subs(u0b.u0, u4upperZero)
        smallb4D[mu] = u0b.smallb4D[mu].subs(u0b.u0, u4upperZero)

    smallb2 = u0b.smallb2etk.subs(u0b.u0, u4upperZero)

    # <a id='step5'></a>
    #
    # ## Step 2.1: Construct all components of the electromagnetic stress-energy tensor $T^{\mu \nu}_{\rm EM}$
    # $$\label{step5}$$
    #
    # \[Back to [top](#top)\]
    #
    # We now have all the pieces to calculate the stress-energy tensor,
    # $$T^{\mu \nu}_{\rm EM} = \underbrace{b^2 u^{\mu} u^{\nu}}_{\rm Term\ 1} +
    # \underbrace{\frac{b^2}{2} g^{\mu \nu}}_{\rm Term\ 2}
    # - \underbrace{b^{\mu} b^{\nu}}_{\rm Term\ 3}.$$
    # Because $u^0$ is a separate variable, we could build the $00$ component separately, then the $\mu0$ and $0\nu$ components, and finally the $\mu\nu$ components. Alternatively, for clarity, we could create a temporary variable $u^\mu=\left( u^0, u^i \right)$

    # Step 2.1: Construct the electromagnetic stress-energy tensor
    # Step 2.1.a: Set up the four-velocity vector
    u4U = ixp.zerorank1(DIM=4)
    u4U[0] = u4upperZero
    for i in range(DIM):
        u4U[i + 1] = uU[i]

    # Step 2.1.b: Build T4EMUU itself
    T4EMUU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            # Term 1: b^2 u^{\mu} u^{\nu}
            T4EMUU[mu][nu] = smallb2 * u4U[mu] * u4U[nu]

    for mu in range(4):
        for nu in range(4):
            # Term 2: b^2 / 2 g^{\mu \nu}
            T4EMUU[mu][nu] += smallb2 * g4UU[mu][nu] / 2

    for mu in range(4):
        for nu in range(4):
            # Term 3: -b^{\mu} b^{\nu}
            T4EMUU[mu][nu] += -smallb4U[mu] * smallb4U[nu]

    # <a id='step6'></a>
    #
    # # Step 2.2: Derivatives of the electromagnetic stress-energy tensor
    # $$\label{step6}$$
    #
    # \[Back to [top](#top)\]
    #
    # If we look at the evolution equation, we see that we will need spatial  derivatives of $T^{\mu\nu}_{\rm EM}$. When confronted with derivatives of complicated expressions, it is generally convenient to declare those expressions as gridfunctions themselves, allowing NRPy+ to take finite-difference derivatives of the expressions. This can even reduce the truncation error associated with the finite differences, because the alternative is to use a function of several finite-difference derivatives, allowing more error to accumulate than the extra gridfunction will introduce. While we will use that technique for some of the subexpressions of $T^{\mu\nu}_{\rm EM}$, we don't want to rely on it for the whole expression; doing so would require us to take the derivative of the magnetic field $B^i$, which is itself found by finite-differencing the vector potential $A_i$. Thus $B^i$ cannot be *consistently* defined in ghost zones. To potentially reduce numerical errors induced by inconsistent finite differencing, we will differentiate $T^{\mu\nu}_{\rm EM}$ term-by-term so that finite-difference derivatives of $A_i$ appear.
    #
    # We will now now take these spatial derivatives of $T^{\mu\nu}_{\rm EM}$, applying the chain rule until it is only in terms of basic gridfunctions and their derivatives: $\alpha$, $\beta^i$, $\gamma_{ij}$, $A_i$, and the four-velocity $u^i$. Along the way, we will also set up useful temporary variables representing the steps of the chain rule. (Notably, *all* of these quantities will be written in terms of $A_i$ and its derivatives):
    #
    # * $B^i$ (already computed in terms of $A_k$, via $B^i = \epsilon^{ijk} \partial_j A_k$),
    # * $B^i_{,l}$,
    # * $b^i$ and $b_i$ (already computed),
    # * $b^i_{,k}$,
    # * $b^2$ (already computed),
    # * and $\left(b^2\right)_{,j}$.
    #
    # (The variables not already computed will not be seen by the ETK, as they are written in terms of $A_i$ and its derivatives; they simply help to organize the NRPy+ code.)
    #
    # So then,
    # \begin{align}
    # \partial_j T^{j}_{{\rm EM} i} &= \partial_j (g_{\mu i} T^{\mu j}_{\rm EM}) \\
    # &= \partial_j \left[g_{\mu i} \left(b^2 u^j u^\mu + \frac{b^2}{2} g^{j\mu} - b^j b^\mu\right)\right] \\
    # &= \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ A} + g_{\mu i} \left( \underbrace{\partial_j \left(b^2 u^j u^\mu \right)}_{\rm Term\ B} + \underbrace{\partial_j \left(\frac{b^2}{2} g^{j\mu}\right)}_{\rm Term\ C} - \underbrace{\partial_j \left(b^j b^k\right)}_{\rm Term\ D} \right) \\
    # \end{align}
    # Following the product and chain rules for each term, we find that
    # \begin{align}
    # {\rm Term\ B} &= \partial_j (b^2 u^j u^\mu) \\
    #               &= \partial_j b^2 u^j u^\mu + b^2 \partial_j u^j u^\mu + b^2 u^j \partial_j u^\mu \\
    #               &= \underbrace{\left(b^2\right)_{,j} u^j u^\mu + b^2 u^j_{,j} u^\mu + b^2 u^j u^{\mu}_{,j}}_{\rm To\ Term\ 2\ below} \\
    # {\rm Term\ C} &= \partial_j \left(\frac{b^2}{2} g^{j\mu}\right) \\
    #               &= \frac{1}{2} \left( \partial_j b^2 g^{j\mu} + b^2 \partial_j g^{j\mu} \right) \\
    #               &= \underbrace{\frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} + \frac{b^2}{2} g^{j\mu}_{\ ,j}}_{\rm To\ Term\ 3\ below} \\
    # {\rm Term\ D} &= \partial_j (b^j b^\mu) \\
    #               &= \underbrace{b^j_{,j} b^\mu + b^j b^\mu_{,j}}_{\rm To\ Term\ 2\ below}\\
    # \end{align}
    #
    # So,
    # \begin{align}
    # \partial_j T^{j}_{{\rm EM} i} &= g_{\mu i,j} T^{\mu j}_{\rm EM} \\
    # &+ g_{\mu i} \left(\left(b^2\right)_{,j} u^j u^\mu +b^2 u^j_{,j} u^\mu + b^2 u^j u^{\mu}_{,j} + \frac{1}{2}\left(b^2\right)_{,j} g^{j\mu} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j}\right);
    # \end{align}
    # We will rearrange this once more, collecting the $b^2$ terms together, noting that Term A will become Term 1:
    # \begin{align}
    # \partial_j  T^{j}_{{\rm EM} i} =& \
    # \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ 1} \\
    # & + \underbrace{g_{\mu i} \left( b^2 u^j_{,j} u^\mu + b^2 u^j u^\mu_{,j} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j} \right)}_{\rm Term\ 2} \\
    # & + \underbrace{g_{\mu i} \left( \left(b^2\right)_{,j} u^j u^\mu + \frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} \right).}_{\rm Term\ 3} \\
    # \end{align}
    #
    # <a id='table2'></a>
    #
    # **List of Derivatives**
    # $$\label{table2}$$
    #
    # Note that this is in terms of the derivatives of several other quantities:
    #
    # * [Step 2.2.a](#capitalBideriv): $B^i_{,l}$: Since $b^i$ is itself a function of $B^i$, we will first need the derivatives $B^i_{,l}$ in terms of the evolved quantity $A_i$ (the vector potential).
    # * [Step 2.2.b](#bideriv): $b^i_{,k}$: Once we have $B^i_{,l}$ we can evaluate derivatives of $b^i$, $b^i_{,k}$
    # * [Step 2.2.c](#b2deriv): The derivative of $b^2 = g_{\mu\nu} b^\mu b^\nu$, $\left(b^2\right)_{,j}$
    # * [Step 2.2.d](#gupijderiv): Derivatives of $g^{\mu\nu}$, $g^{\mu\nu}_{\ ,k}$
    # * [Step 2.2.e](#alltogether): Putting it together: $\partial_j T^{j}_{{\rm EM} i}$
    #     * [Step 2.2.e.i](#alltogether1): Putting it together: Term 1
    #     * [Step 2.2.e.ii](#alltogether2): Putting it together: Term 2
    #     * [Step 2.2.e.iii](#alltogether3): Putting it together: Term 3

    # <a id='capitalBideriv'></a>
    #
    # ## Step 2.2.a: Derivatives of $B^i$
    #
    # $$\label{capitalbideriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # First, we will build the derivatives of the magnetic field. Since $b^i$ is a function of $B^i$, we will start from the definition of $B^i$ in terms of $A_i$, $B^i = \frac{[ijk]}{\sqrt{\gamma}} \partial_j A_k$. We will first apply the product rule, noting that the symbol $[ijk]$ consists purely of the integers $-1, 0, 1$ and thus can be treated as a constant in this process.
    # \begin{align}
    # B^i_{,l} &= \partial_l \left( \frac{[ijk]}{\sqrt{\gamma}} \partial_j A_k \right)  \\
    #          &= [ijk] \partial_l \left( \frac{1}{\sqrt{\gamma}}\right) \partial_j A_k + \frac{[ijk]}{\sqrt{\gamma}} \partial_l \partial_j A_k \\
    #          &= [ijk]\left(-\frac{\gamma_{,l}}{2\gamma^{3/2}}\right) \partial_j A_k + \frac{[ijk]}{\sqrt{\gamma}} \partial_l \partial_j A_k \\
    # \end{align}
    # Now, we will substitute back in for the definition of the Levi-Civita tensor: $\epsilon^{ijk} = [ijk] / \sqrt{\gamma}$. Then we will substitute the magnetic field $B^i$ back in.
    # \begin{align}
    # B^i_{,l} &= -\frac{\gamma_{,l}}{2\gamma} \epsilon^{ijk} \partial_j A_k + \epsilon^{ijk} \partial_l \partial_j A_k \\
    #          &= -\frac{\gamma_{,l}}{2\gamma} B^i + \epsilon^{ijk} A_{k,jl}, \\
    # \end{align}
    #
    # Thus, the expression we are left with for the derivatives of the magnetic field is:
    # \begin{align}
    # B^i_{,l} &= \underbrace{-\frac{\gamma_{,l}}{2\gamma} B^i}_{\rm Term\ 1} + \underbrace{\epsilon^{ijk} A_{k,jl}}_{\rm Term\ 2}, \\
    # \end{align}
    # where $\epsilon^{ijk} = [ijk] / \sqrt{\gamma}$ is the antisymmetric Levi-Civita tensor and $\gamma$ is the determinant of the three-metric.
    #

    # Step 2.2: Derivatives of the electromagnetic stress-energy tensor

    # We already have a handy function to define the Levi-Civita symbol in WeylScalars
    import WeylScal4NRPy.WeylScalars_Cartesian as weyl
    # Initialize the Levi-Civita tensor by setting it equal to the Levi-Civita symbol
    LeviCivitaSymbolDDD = weyl.define_LeviCivitaSymbol_rank3()
    LeviCivitaTensorDDD = ixp.zerorank3()
    LeviCivitaTensorUUU = ixp.zerorank3()

    global gammaUU, gammadet
    gammaUU = ixp.register_gridfunctions_for_single_rank2(
        "AUX", "gammaUU", "sym01")
    gammadet = gri.register_gridfunctions("AUX", "gammadet")
    gammaUU, gammadet = ixp.symm_matrix_inverter3x3(gammaDD)

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                LeviCivitaTensorDDD[i][j][
                    k] = LeviCivitaSymbolDDD[i][j][k] * sp.sqrt(gammadet)
                LeviCivitaTensorUUU[i][j][
                    k] = LeviCivitaSymbolDDD[i][j][k] / sp.sqrt(gammadet)

    AD_dD = ixp.declarerank2("AD_dD", "nosym")

    # Step 2.2.a: Construct the derivatives of the magnetic field.
    gammadet_dD = ixp.declarerank1("gammadet_dD")

    AD_dDD = ixp.declarerank3("AD_dDD", "sym12")
    # The other partial derivatives of B^i
    BUdD = ixp.zerorank2()
    for i in range(DIM):
        for l in range(DIM):
            # Term 1: -\gamma_{,l} / (2\gamma) B^i
            BUdD[i][l] = -gammadet_dD[l] * BU[i] / (2 * gammadet)

    for i in range(DIM):
        for l in range(DIM):
            for j in range(DIM):
                for k in range(DIM):
                    # Term 2: \epsilon^{ijk} A_{k,jl}
                    BUdD[i][
                        l] += LeviCivitaTensorUUU[i][j][k] * AD_dDD[k][j][l]

    # <a id='bideriv'></a>
    #
    # ## Step 2.2.b: Derivatives of $b^i$
    # $$\label{bideriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Now, we will code the derivatives of the spatial components of $b^{\mu}$, $b^i$:
    # $$
    # b^i_{,k} = \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right)  \left(B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2}.
    # $$
    #
    # We should note that while $b^\mu$ is a four-vector (and the code reflects this: $\text{smallb4U}$ and $\text{smallb4U}$ have $\text{DIM=4}$), we only need the spatial components. We will only focus on the spatial components for the moment.
    #
    #
    # Let's go into a little more detail on where this comes from. We start from the definition $$b^i = \frac{B^i + (u_j B^j) u^i}{\sqrt{4\pi}\alpha u^0};$$ we then apply the quotient rule:
    # \begin{align}
    # b^i_{,k} &= \frac{\left(\sqrt{4\pi}\alpha u^0\right) \partial_k \left(B^i + (u_j B^j) u^i\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\sqrt{4\pi}\alpha u^0\right)}{\left(\sqrt{4\pi}\alpha u^0\right)^2} \\
    # &= \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right) \partial_k \left(B^i + (u_j B^j) u^i\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2} \\
    # \end{align}
    # Note that $\left( \alpha u^0 \right)$ is being used as its own gridfunction, so $\partial_k \left(a u^0\right)$ will be finite-differenced by NRPy+ directly. We will also apply the product rule to the term $\partial_k \left(B^i + (u_j B^j) u^i\right) = B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}$. So,
    # $$ b^i_{,k} = \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right)  \left(B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2}. $$
    #
    # It will be easier to code this up if we rearrange these terms to group together the terms that involve contractions over $j$. Doing that, we find
    # $$
    # b^i_{,k} = \frac{\overbrace{\alpha u^0 B^i_{,k} - B^i \partial_k (\alpha u^0)}^{\rm Term\ Num1} + \overbrace{\left( \alpha u^0 \right) \left( u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k} \right)}^{\rm Term\ Num2.a} - \overbrace{\left( u_j B^j u^i \right) \partial_k \left( \alpha u^0 \right) }^{\rm Term\ Num2.b}}{\underbrace{\sqrt{4 \pi} \left( \alpha u^0 \right)^2}_{\rm Term\ Denom}}.
    # $$

    global u0alpha
    u0alpha = gri.register_gridfunctions("AUX", "u0alpha")
    u0alpha = alpha * u4upperZero
    u0alpha_dD = ixp.declarerank1("u0alpha_dD")
    uU_dD = ixp.declarerank2("uU_dD", "nosym")
    uD_dD = ixp.declarerank2("uD_dD", "nosym")

    # Step 2.2.b: Construct derivatives of the small b vector
    # smallbUdD represents the derivative of smallb4U
    smallbUdD = ixp.zerorank2()
    for i in range(DIM):
        for k in range(DIM):
            # Term Num1: \alpha u^0 B^i_{,k} - B^i \partial_k (\alpha u^0)
            smallbUdD[i][k] += u0alpha * BUdD[i][k] - BU[i] * u0alpha_dD[k]

    for i in range(DIM):
        for k in range(DIM):
            for j in range(DIM):
                # Term Num2.a: terms that require contractions over k, and thus an extra loop.
                # ( \alpha u^0 ) (  u_{j,k} B^j u^i
                #                 + u_j B^j_{,k} u^i
                #                 + u_j B^j u^i_{,k} )
                smallbUdD[i][k] += u0alpha * (uD_dD[j][k] * BU[j] * uU[i] +
                                              uD[j] * BUdD[j][k] * uU[i] +
                                              uD[j] * BU[j] * uU_dD[i][k])

    for i in range(DIM):
        for k in range(DIM):
            for j in range(DIM):
                #Term 2.b (More contractions over k): ( u_j B^j u^i ) ( \alpha u^0 ),k
                smallbUdD[i][k] += -(uD[j] * BU[j] * uU[i]) * u0alpha_dD[k]

    for i in range(DIM):
        for k in range(DIM):
            # Term Denom: Divide the numerator by sqrt(4 pi) * (alpha u^0)^2
            smallbUdD[i][k] /= sp.sqrt(4 * M_PI) * u0alpha * u0alpha

    # <a id='b2deriv'></a>
    #
    # ## Step 2.2.c: Derivative of $b^2$
    # $$\label{b2deriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Here, we will take the derivative of $b^2 = g_{\mu\nu} b^\mu b^\nu$. Using the product rule,
    # \begin{align}
    # \left(b^2\right)_{,j} &= \partial_j \left( g_{\mu\nu} b^\mu b^\nu \right) \\
    #                       &= g_{\mu\nu,j} b^\mu b^\nu + g_{\mu\nu} b^\mu_{,j} b^\nu + g_{\mu\nu} b^\mu b^\nu_{,j} \\
    #                       &= g_{\mu\nu,j} b^\mu b^\nu + 2 g_{\mu\nu} b^\mu_{,j} b^\nu.
    # \end{align}
    # We have already defined the spatial derivatives of the four-metric $g_{\mu\nu,j}$ in [this section](#step3); we have also defined the spatial derivatives of spatial components of $b^\mu$, $b^i_{,k}$ in [this section](#bideriv). Notice the above expression requires spatial derivatives of the *zeroth* component of $b^\mu$ as well, $b^0_{,j}$, which we will now compute. Starting with the definition, and applying the quotient rule:
    # \begin{align}
    # b^0 &= \frac{u_k B^k}{\sqrt{4\pi}\alpha}, \\
    # \rightarrow b^0_{,j} &= \frac{1}{\sqrt{4\pi}} \frac{\alpha \left( u_{k,j} B^k + u_k B^k_{,j} \right) - u_k B^k \alpha_{,j}}{\alpha^2} \\
    #     &= \frac{\alpha u_{k,j} B^k + \alpha u_k B^k_{,j} - \alpha_{,j} u_k B^k}{\sqrt{4\pi} \alpha^2}.
    # \end{align}
    # We will first code the numerator, and then divide through by the denominator.

    # Step 2.2.c: Construct the derivative of b^2
    # First construct the derivative b^0_{,j}
    # This four-vector will make b^2 simpler:
    smallb4UdD = ixp.zerorank2(DIM=4)
    # Fill in the zeroth component
    for j in range(DIM):
        for k in range(DIM):
            # The numerator:  \alpha u_{k,j} B^k
            #               + \alpha u_k B^k_{,j}
            #               - \alpha_{,j} u_k B^k
            smallb4UdD[0][j + 1] += alpha * uD_dD[k][j] * BU[k] + alpha * uD[
                k] * BUdD[k][j] - alpha_dD[j] * uD[k] * BU[k]
    for j in range(DIM):
        # Divide through by the denominator: \sqrt{4\pi} \alpha^2
        smallb4UdD[0][j + 1] /= sp.sqrt(4 * M_PI) * alpha * alpha

    # At this point, both $b^0_{\ ,j}$ and $b^i_{\ ,j}$ have been computed, but one exists inconveniently in the $4\times 4$ component $\verb|smallb4UdD[][]|$ and the other in the $3\times 3$ component $\verb|smallbUdD[][]|$. So that we can perform full implied sums over $g_{\mu\nu} b^\mu_{,j} b^\nu$ more conveniently, we will now store all information from $\verb|smallbUdD[i][j]|$ into $\verb|smallb4UdD[i+1][j+1]|$:

    # Now, we'll fill out the rest of the four-vector with b^i_{,j} that we derived above.
    for i in range(DIM):
        for j in range(DIM):
            smallb4UdD[i + 1][j + 1] = smallbUdD[i][j]

    # Using 4-component (Greek-indexed) quantities, we can now complete our construction of
    # $$\left(b^2\right)_{,j} = g_{\mu\nu,j} b^\mu b^\nu + 2 g_{\mu\nu} b^\mu_{,j} b^\nu:$$

    smallb2_dD = ixp.zerorank1()
    for j in range(DIM):
        for mu in range(4):
            for nu in range(4):
                #   g_{\mu\nu,j} b^\mu b^\nu
                # + 2 g_{\mu\nu} b^\mu_{,j} b^\nu
                smallb2_dD[j] += g4DDdD[mu][nu][j + 1] * smallb4U[
                    mu] * smallb4U[nu] + 2 * g4DD[mu][nu] * smallb4UdD[mu][
                        j + 1] * smallb4U[nu]

    # <a id='gupijderiv'></a>
    #
    # ## Step 2.2.d: Derivatives of $g^{\mu\nu}$
    # $$\label{gupijderiv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will need derivatives of the inverse four-metric, as well. Let us begin with $g^{00}$: since $g^{00} = -1/\alpha^2$ ([Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf)), $$g^{00}_{\ ,k} = \frac{2 \alpha_{,k}}{\alpha^3}$$
    #

    # Step 2.2.d: Construct derivatives of the components of g^{\mu\nu}
    g4UUdD = ixp.zerorank3(DIM=4)

    for k in range(DIM):
        # 2 \alpha_{,k} / \alpha^3
        g4UUdD[0][0][k + 1] = 2 * alpha_dD[k] / alpha**3

    # Now, we will code the $g^{i0}_{\ ,k}$ and $g^{0j}_{\ ,k}$ components. According to [Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf), $g^{i0} = g^{0i} = \beta^i/\alpha^2$, so $$g^{i0}_{\ ,k} = g^{0i}_{\ ,k} = \frac{\alpha^2 \beta^i_{,k} - 2 \beta^i \alpha \alpha_{,k}}{\alpha^4}$$ by the quotient rule. So, we'll code
    # $$
    # g^{i0} = g^{0i} =
    # \underbrace{\frac{\beta^i_{,k}}{\alpha^2}}_{\rm Term\ 1}
    # - \underbrace{\frac{2 \beta^i \alpha_{,k}}{\alpha^3}}_{\rm Term\ 2}
    # $$

    for k in range(DIM):
        for i in range(DIM):
            # Term 1:                                    \beta^i_{,k} / \alpha^2
            g4UUdD[i + 1][0][k +
                             1] = g4UUdD[0][i +
                                            1][k +
                                               1] = betaU_dD[i][k] / alpha**2

    for k in range(DIM):
        for i in range(DIM):
            # Term 2:              -2 \beta^i \alpha_{,k} / \alpha^3
            g4UUdD[i + 1][0][k + 1] += -2 * betaU[i] * alpha_dD[k] / alpha**3
            g4UUdD[0][i + 1][k + 1] += -2 * betaU[i] * alpha_dD[k] / alpha**3

    # We will also need derivatives of the spatial part of the inverse four-metric: since $g^{ij} = \gamma^{ij} - \frac{\beta^i \beta^j}{\alpha^2}$ ([Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf)),
    # \begin{align}
    # g^{ij}_{\ ,k} &= \gamma^{ij}_{\ ,k} - \frac{\alpha^2 \partial_k (\beta^i \beta^j) - \beta^i \beta^j \partial_k \alpha^2}{(\alpha^2)^2} \\
    # &= \gamma^{ij}_{\ ,k} - \frac{\alpha^2\beta^i \beta^j_{,k}+\alpha^2\beta^i_{,k} \beta^j-2\beta^i \beta^j \alpha \alpha_{,k}}{\alpha^4}. \\
    # &= \gamma^{ij}_{\ ,k} - \frac{\alpha\beta^i \beta^j_{,k}+\alpha\beta^i_{,k} \beta^j-2\beta^i \beta^j \alpha_{,k}}{\alpha^3} \\
    # g^{ij}_{\ ,k} &= \underbrace{\gamma^{ij}_{\ ,k}}_{\rm Term\ 1} - \underbrace{\frac{\beta^i \beta^j_{,k}}{\alpha^2}}_{\rm Term\ 2} - \underbrace{\frac{\beta^i_{,k} \beta^j}{\alpha^2}}_{\rm Term\ 3} + \underbrace{\frac{2\beta^i \beta^j \alpha_{,k}}{\alpha^3}}_{\rm Term\ 4}. \\
    # \end{align}
    #

    gammaUU_dD = ixp.declarerank3("gammaUU_dD", "sym01")

    # The spatial derivatives of the spatial components of the four metric:
    # Term 1: \gamma^{ij}_{\ ,k}
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j + 1][k + 1] = gammaUU_dD[i][j][k]

    # Term 2: - \beta^i \beta^j_{,k} / \alpha^2
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j +
                              1][k +
                                 1] += -betaU[i] * betaU_dD[j][k] / alpha**2

    # Term 3: - \beta^i_{,k} \beta^j / \alpha^2
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j +
                              1][k +
                                 1] += -betaU_dD[i][k] * betaU[j] / alpha**2

    # Term 4: 2\beta^i \beta^j \alpha_{,k}\alpha^3
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j + 1][
                    k + 1] += 2 * betaU[i] * betaU[j] * alpha_dD[k] / alpha**3

    # <a id='alltogether'></a>
    #
    # ## Step 2.2.e: Putting it together:
    # $$\label{alltogether}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # So, we can now put it all together, starting from the expression we derived above in [Step 2.2](#step6):
    # \begin{align}
    # \partial_j  T^{j}_{{\rm EM} i} =& \
    # \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ 1} \\
    # & + \underbrace{g_{\mu i} \left( b^2 u^j_{,j} u^\mu + b^2 u^j u^\mu_{,j} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j} \right)}_{\rm Term\ 2} \\
    # & + \underbrace{g_{\mu i} \left( \left(b^2\right)_{,j} u^j u^\mu + \frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} \right).}_{\rm Term\ 3} \\
    # \end{align}
    #
    # <a id='alltogether1'></a>
    #
    # ### Step 2.2.e.i: Putting it together: Term 1
    # $$\label{alltogether1}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will now construct this term by term. Term 1 is straightforward: $${\rm Term\ 1} = \gamma_{\mu i,j} T^{\mu j}_{\rm EM}.$$

    # Step 2.2.e: Construct TEMUDdD_contracted itself
    # Step 2.2.e.i
    TEMUDdD_contracted = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 1:                g_{\mu i,j} T^{\mu j}_{\rm EM}
                TEMUDdD_contracted[i] += g4DDdD[mu][i + 1][j +
                                                           1] * T4EMUU[mu][j +
                                                                           1]

    # We'll need derivatives of u4U for the next part:
    u4UdD = ixp.zerorank2(DIM=4)
    u4upperZero_dD = ixp.declarerank1(
        "u4upperZero_dD"
    )  # Note that derivatives can't be done in 4-D with the current version of NRPy
    for i in range(DIM):
        u4UdD[0][i + 1] = u4upperZero_dD[i]
    for i in range(DIM):
        for j in range(DIM):
            u4UdD[i + 1][j + 1] = uU_dD[i][j]

    # <a id='alltogether2'></a>
    #
    # ### Step 2.2.e.ii: Putting it together: Term 2
    # $$\label{alltogether2}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will now add $${\rm Term\ 2} = g_{\mu i} \left( \underbrace{b^2 u^j_{,j} u^\mu}_{\rm Term\ 2a} + \underbrace{b^2 u^j u^\mu_{,j}}_{\rm Term\ 2b} + \underbrace{\frac{b^2}{2} g^{j\mu}_{\ ,j}}_{\rm Term\ 2c} + \underbrace{b^j_{,j} b^\mu}_{\rm Term\ 2d} + \underbrace{b^j b^\mu_{,j}}_{\rm Term\ 2e} \right)$$ to $\partial_j  T^{j}_{{\rm EM} i}$. These are the terms that involve contractions over $k$ (but no metric derivatives like Term 1 had).
    #

    # Step 2.2.e.ii
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2a: g_{\mu i} b^2 u^j_{,j} u^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2 * uU_dD[j][j] * u4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2b: g_{\mu i} b^2 u^j u^\mu_{,j}
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2 * uU[j] * u4UdD[mu][j + 1]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2c: g_{\mu i} b^2 g^{j \mu}_{,j} / 2
                TEMUDdD_contracted[i] += g4DD[mu][i + 1] * smallb2 * g4UUdD[
                    j + 1][mu][j + 1] / 2

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2d: g_{\mu i} b^j_{,j} b^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallbUdD[j][j] * smallb4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2e: g_{\mu i} b^j b^\mu_{,j}
                TEMUDdD_contracted[i] += g4DD[mu][i + 1] * smallb4U[
                    j + 1] * smallb4UdD[mu][j + 1]

    # <a id='alltogether3'></a>
    #
    # ### Step 2.2.e.iii: Putting it together: Term 3
    # $$\label{alltogether3}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Now, we will add $${\rm Term\ 3} = g_{\mu i} \left( \underbrace{\left(b^2\right)_{,j} u^j u^\mu}_{\rm Term\ 3a} + \underbrace{\frac{1}{2} \left(b^2\right)_{,j} g^{j\mu}}_{\rm Term\ 3b} \right).$$

    # Step 2.2.e.iii
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 3a: g_{\mu i} ( b^2 )_{,j} u^j u^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2_dD[j] * uU[j] * u4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 3b: g_{mu i} ( b^2 )_{,j} g^{j\mu} / 2
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2_dD[j] * g4UU[j + 1][mu] / 2

    #
    # # Evolution equation for $\tilde{S}_i$
    # <a id='step7'></a>
    #
    # ## Step 3.0: Construct the evolution equation for $\tilde{S}_i$
    # $$\label{step7}$$
    #
    # \[Back to [top](#top)\]
    #
    # Finally, we will return our attention to the time evolution equation (from eq. 13 of the [original paper](https://arxiv.org/pdf/1704.00599.pdf)),
    # \begin{align}
    # \partial_t \tilde{S}_i &= - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} \\
    #                        &= -T^j_{{\rm EM} i} \partial_j (\alpha \sqrt{\gamma}) - \alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i} + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} \\
    #                        &= \underbrace{-g_{i\mu} T^{\mu j}_{\rm EM} \partial_j (\alpha \sqrt{\gamma})
    # }_{\rm Term\ 1} - \underbrace{\alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i}}_{\rm Term\ 2} + \underbrace{\frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}}_{\rm Term\ 3} .
    # \end{align}
    # We will first take derivatives of $\alpha \sqrt{\gamma}$, then construct each term in turn.

    # Step 3.0: Construct the evolution equation for \tilde{S}_i
    # Here, we set up the necessary machinery to take FD derivatives of alpha * sqrt(gamma)
    global alpsqrtgam
    alpsqrtgam = gri.register_gridfunctions("AUX", "alpsqrtgam")
    alpsqrtgam = alpha * sp.sqrt(gammadet)
    alpsqrtgam_dD = ixp.declarerank1("alpsqrtgam_dD")

    global Stilde_rhsD
    Stilde_rhsD = ixp.zerorank1()
    # The first term: g_{i\mu} T^{\mu j}_{\rm EM} \partial_j (\alpha \sqrt{\gamma})
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                Stilde_rhsD[i] += -g4DD[i + 1][mu] * T4EMUU[mu][
                    j + 1] * alpsqrtgam_dD[j]

    # The second term: \alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i}
    for i in range(DIM):
        Stilde_rhsD[i] += -alpsqrtgam * TEMUDdD_contracted[i]

    # The third term: \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} / 2
    for i in range(DIM):
        for mu in range(4):
            for nu in range(4):
                Stilde_rhsD[i] += alpsqrtgam * T4EMUU[mu][nu] * g4DDdD[mu][nu][
                    i + 1] / 2

    # # Evolution equations for $A_i$ and $\Phi$
    # <a id='step8'></a>
    #
    # ## Step 4.0: Construct the evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$
    # $$\label{step8}$$
    #
    # \[Back to [top](#top)\]
    #
    # We will also need to evolve the vector potential $A_i$. This evolution is given as eq. 17 in the [$\texttt{GiRaFFE}$](https://arxiv.org/pdf/1704.00599.pdf) paper:
    # $$\boxed{\partial_t A_i = \epsilon_{ijk} v^j B^k - \partial_i (\underbrace{\alpha \Phi - \beta^j A_j}_{\rm AevolParen}),}$$
    # where $\epsilon_{ijk} = [ijk] \sqrt{\gamma}$ is the antisymmetric Levi-Civita tensor, the drift velocity $v^i = u^i/u^0$, $\gamma$ is the determinant of the three metric, $B^k$ is the magnetic field, $\alpha$ is the lapse, and $\beta$ is the shift.
    # The scalar electric potential $\Phi$ is also evolved by eq. 19:
    # $$\boxed{\partial_t [\sqrt{\gamma} \Phi] = -\partial_j (\underbrace{\alpha\sqrt{\gamma}A^j - \beta^j [\sqrt{\gamma} \Phi]}_{\rm PevolParenU[j]}) - \xi \alpha [\sqrt{\gamma} \Phi],}$$
    # with $\xi$ chosen as a damping factor.
    #
    # ### Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    #
    # After declaring a  some needed quantities, we will also define the parenthetical terms (underbrace above) that we need to take derivatives of. That way, we can take finite-difference derivatives easily. Note that we use $A^j = \gamma^{ij} A_i$, while $A_i$ (with $\Phi$) is technically a four-vector; this is justified, however, since $n_\mu A^\mu = 0$, where $n_\mu$ is a normal to the hypersurface, $A^0=0$ (according to Sec. II, subsection C of [this paper](https://arxiv.org/pdf/1110.4633.pdf)).

    # Step 4.0: Construct the evolution equations for A_i and sqrt(gamma)Phi
    # Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    xi = par.Cparameters(
        "REAL", thismodule, "xi", 0.1
    )  # The (dimensionful) Lorenz damping factor. Recommendation: set to ~1.5/max(delta t).

    # Define sqrt(gamma)Phi as psi6Phi
    psi6Phi = gri.register_gridfunctions("EVOL", "psi6Phi")
    Phi = psi6Phi / sp.sqrt(gammadet)

    # We'll define a few extra gridfunctions to avoid complicated derivatives
    global AevolParen, PevolParenU
    AevolParen = gri.register_gridfunctions("AUX", "AevolParen")
    PevolParenU = ixp.register_gridfunctions_for_single_rank1(
        "AUX", "PevolParenU")

    # {\rm AevolParen} = \alpha \Phi - \beta^j A_j
    AevolParen = alpha * Phi
    for j in range(DIM):
        AevolParen += -betaU[j] * AD[j]

    # {\rm PevolParenU[j]} = \alpha\sqrt{\gamma} \gamma^{ij} A_i - \beta^j [\sqrt{\gamma} \Phi]
    for j in range(DIM):
        PevolParenU[j] = -betaU[j] * psi6Phi
        for i in range(DIM):
            PevolParenU[j] += alpha * sp.sqrt(gammadet) * gammaUU[i][j] * AD[i]

    AevolParen_dD = ixp.declarerank1("AevolParen_dD")
    PevolParenU_dD = ixp.declarerank2("PevolParenU_dD", "nosym")

    # ### Step 4.0.b: Construct the actual evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$
    #
    # Now to set the evolution equations ([eqs. 17 and 19](https://arxiv.org/pdf/1704.00599.pdf)), recalling that the drift velocity $v^i = u^i/u^0$:
    # \begin{align}
    # \partial_t A_i &= \epsilon_{ijk} v^j B^k - \partial_i (\alpha \Phi - \beta^j A_j) \\
    #                &= \epsilon_{ijk} \frac{u^j}{u^0} B^k - {\rm AevolParen\_dD[i]} \\
    # \partial_t [\sqrt{\gamma} \Phi] &= -\partial_j \left(\left(\alpha\sqrt{\gamma}\right)A^j - \beta^j [\sqrt{\gamma} \Phi]\right) - \xi \alpha [\sqrt{\gamma} \Phi] \\
    #                                 &= -{\rm PevolParenU\_dD[j][j]} - \xi \alpha [\sqrt{\gamma} \Phi]. \\
    # \end{align}

    # Step 4.0.b: Construct the actual evolution equations for A_i and sqrt(gamma)Phi
    global A_rhsD, psi6Phi_rhs
    A_rhsD = ixp.zerorank1()
    psi6Phi_rhs = sp.sympify(0)

    for i in range(DIM):
        A_rhsD[i] = -AevolParen_dD[i]
        for j in range(DIM):
            for k in range(DIM):
                A_rhsD[i] += LeviCivitaTensorDDD[i][j][k] * (
                    uU[j] / u4upperZero) * BU[k]

    psi6Phi_rhs = -xi * alpha * psi6Phi
    for j in range(DIM):
        psi6Phi_rhs += -PevolParenU_dD[j][j]
Example #22
0
def GiRaFFE_NRPy_Main_Driver_generate_all(out_dir):
    cmd.mkdir(out_dir)

    gammaDD = ixp.register_gridfunctions_for_single_rank2("AUXEVOL",
                                                          "gammaDD",
                                                          "sym01",
                                                          DIM=3)
    betaU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                        "betaU",
                                                        DIM=3)
    alpha = gri.register_gridfunctions("AUXEVOL", "alpha")
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL", "AD")
    BU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL", "BU")
    ValenciavU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "ValenciavU")
    psi6Phi = gri.register_gridfunctions("EVOL", "psi6Phi")
    StildeD = ixp.register_gridfunctions_for_single_rank1("EVOL", "StildeD")

    ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                "PhievolParenU",
                                                DIM=3)
    gri.register_gridfunctions("AUXEVOL", "AevolParen")

    # Declare this symbol:
    sqrt4pi = par.Cparameters("REAL", thismodule, "sqrt4pi", "sqrt(4.0*M_PI)")

    GRHD.compute_sqrtgammaDET(gammaDD)
    GRFFE.compute_AD_source_term_operand_for_FD(GRHD.sqrtgammaDET, betaU,
                                                alpha, psi6Phi, AD)
    GRFFE.compute_psi6Phi_rhs_flux_term_operand(gammaDD, GRHD.sqrtgammaDET,
                                                betaU, alpha, AD, psi6Phi)

    parens_to_print = [\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","AevolParen"),rhs=GRFFE.AevolParen),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","PhievolParenU0"),rhs=GRFFE.PhievolParenU[0]),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","PhievolParenU1"),rhs=GRFFE.PhievolParenU[1]),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","PhievolParenU2"),rhs=GRFFE.PhievolParenU[2]),\
                      ]

    subdir = "RHSs"
    cmd.mkdir(os.path.join(out_dir, subdir))
    desc = "Calculate quantities to be finite-differenced for the GRFFE RHSs"
    name = "calculate_AD_gauge_term_psi6Phi_flux_term_for_RHSs"
    outCfunction(
        outfile=os.path.join(out_dir, subdir, name + ".h"),
        desc=desc,
        name=name,
        params=
        "const paramstruct *restrict params,const REAL *restrict in_gfs,REAL *restrict auxevol_gfs",
        body=fin.FD_outputC("returnstring", parens_to_print,
                            params=outCparams).replace("IDX4", "IDX4S"),
        loopopts="AllPoints",
        rel_path_for_Cparams=os.path.join("../"))

    xi_damping = par.Cparameters("REAL", thismodule, "xi_damping", 0.1)
    GRFFE.compute_psi6Phi_rhs_damping_term(alpha, psi6Phi, xi_damping)

    AevolParen_dD = ixp.declarerank1("AevolParen_dD", DIM=3)
    PhievolParenU_dD = ixp.declarerank2("PhievolParenU_dD", "nosym", DIM=3)

    A_rhsD = ixp.zerorank1()
    psi6Phi_rhs = GRFFE.psi6Phi_damping

    for i in range(3):
        A_rhsD[i] += -AevolParen_dD[i]
        psi6Phi_rhs += -PhievolParenU_dD[i][i]

    # Add Kreiss-Oliger dissipation to the GRFFE RHSs:
#     psi6Phi_dKOD = ixp.declarerank1("psi6Phi_dKOD")
#     AD_dKOD    = ixp.declarerank2("AD_dKOD","nosym")
#     for i in range(3):
#         psi6Phi_rhs += diss_strength*psi6Phi_dKOD[i]*rfm.ReU[i] # ReU[i] = 1/scalefactor_orthog_funcform[i]
#         for j in range(3):
#             A_rhsD[j] += diss_strength*AD_dKOD[j][i]*rfm.ReU[i] # ReU[i] = 1/scalefactor_orthog_funcform[i]

    RHSs_to_print = [\
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD0"),rhs=A_rhsD[0]),\
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD1"),rhs=A_rhsD[1]),\
                     lhrh(lhs=gri.gfaccess("rhs_gfs","AD2"),rhs=A_rhsD[2]),\
                     lhrh(lhs=gri.gfaccess("rhs_gfs","psi6Phi"),rhs=psi6Phi_rhs),\
                    ]

    desc = "Calculate AD gauge term and psi6Phi RHSs"
    name = "calculate_AD_gauge_psi6Phi_RHSs"
    source_Ccode = outCfunction(
        outfile="returnstring",
        desc=desc,
        name=name,
        params=
        "const paramstruct *params,const REAL *in_gfs,const REAL *auxevol_gfs,REAL *rhs_gfs",
        body=fin.FD_outputC("returnstring", RHSs_to_print,
                            params=outCparams).replace("IDX4", "IDX4S"),
        loopopts="InteriorPoints",
        rel_path_for_Cparams=os.path.join("../")).replace(
            "= NGHOSTS", "= NGHOSTS_A2B").replace(
                "NGHOSTS+Nxx0", "Nxx_plus_2NGHOSTS0-NGHOSTS_A2B").replace(
                    "NGHOSTS+Nxx1", "Nxx_plus_2NGHOSTS1-NGHOSTS_A2B").replace(
                        "NGHOSTS+Nxx2", "Nxx_plus_2NGHOSTS2-NGHOSTS_A2B")
    # Note the above .replace() functions. These serve to expand the loop range into the ghostzones, since
    # the second-order FD needs fewer than some other algorithms we use do.
    with open(os.path.join(out_dir, subdir, name + ".h"), "w") as file:
        file.write(source_Ccode)

    source.write_out_functions_for_StildeD_source_term(
        os.path.join(out_dir, subdir), outCparams, gammaDD, betaU, alpha,
        ValenciavU, BU, sqrt4pi)

    subdir = "FCVAL"
    cmd.mkdir(os.path.join(out_dir, subdir))
    FCVAL.GiRaFFE_NRPy_FCVAL(os.path.join(out_dir, subdir))

    subdir = "PPM"
    cmd.mkdir(os.path.join(out_dir, subdir))
    PPM.GiRaFFE_NRPy_PPM(os.path.join(out_dir, subdir))

    # We will pass values of the gridfunction on the cell faces into the function. This requires us
    # to declare them as C parameters in NRPy+. We will denote this with the _face infix/suffix.
    alpha_face = gri.register_gridfunctions("AUXEVOL", "alpha_face")
    gamma_faceDD = ixp.register_gridfunctions_for_single_rank2(
        "AUXEVOL", "gamma_faceDD", "sym01")
    beta_faceU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "beta_faceU")

    # We'll need some more gridfunctions, now, to represent the reconstructions of BU and ValenciavU
    # on the right and left faces
    Valenciav_rU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                               "Valenciav_rU",
                                                               DIM=3)
    B_rU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                       "B_rU",
                                                       DIM=3)
    Valenciav_lU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                               "Valenciav_lU",
                                                               DIM=3)
    B_lU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL",
                                                       "B_lU",
                                                       DIM=3)

    subdir = "RHSs"
    Af.GiRaFFE_NRPy_Afield_flux(os.path.join(out_dir, subdir))
    Sf.generate_C_code_for_Stilde_flux(os.path.join(out_dir,
                                                    subdir), True, alpha_face,
                                       gamma_faceDD, beta_faceU, Valenciav_rU,
                                       B_rU, Valenciav_lU, B_lU, sqrt4pi)

    subdir = "boundary_conditions"
    cmd.mkdir(os.path.join(out_dir, subdir))
    BC.GiRaFFE_NRPy_BCs(os.path.join(out_dir, subdir))

    subdir = "A2B"
    cmd.mkdir(os.path.join(out_dir, subdir))
    A2B.GiRaFFE_NRPy_A2B(os.path.join(out_dir, subdir), gammaDD, AD, BU)

    C2P_P2C.GiRaFFE_NRPy_C2P(StildeD, BU, gammaDD, betaU, alpha)

    values_to_print = [\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD0"),rhs=C2P_P2C.outStildeD[0]),\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD1"),rhs=C2P_P2C.outStildeD[1]),\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD2"),rhs=C2P_P2C.outStildeD[2]),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU0"),rhs=C2P_P2C.ValenciavU[0]),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU1"),rhs=C2P_P2C.ValenciavU[1]),\
                       lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU2"),rhs=C2P_P2C.ValenciavU[2])\
                      ]

    subdir = "C2P"
    cmd.mkdir(os.path.join(out_dir, subdir))
    desc = "Apply fixes to \tilde{S}_i and recompute the velocity to match with current sheet prescription."
    name = "GiRaFFE_NRPy_cons_to_prims"
    outCfunction(
        outfile=os.path.join(out_dir, subdir, name + ".h"),
        desc=desc,
        name=name,
        params=
        "const paramstruct *params,REAL *xx[3],REAL *auxevol_gfs,REAL *in_gfs",
        body=fin.FD_outputC("returnstring", values_to_print,
                            params=outCparams).replace("IDX4", "IDX4S"),
        loopopts="AllPoints,Read_xxs",
        rel_path_for_Cparams=os.path.join("../"))

    C2P_P2C.GiRaFFE_NRPy_P2C(gammaDD, betaU, alpha, ValenciavU, BU, sqrt4pi)

    values_to_print = [\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD0"),rhs=C2P_P2C.StildeD[0]),\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD1"),rhs=C2P_P2C.StildeD[1]),\
                       lhrh(lhs=gri.gfaccess("in_gfs","StildeD2"),rhs=C2P_P2C.StildeD[2]),\
                      ]

    desc = "Recompute StildeD after current sheet fix to Valencia 3-velocity to ensure consistency between conservative & primitive variables."
    name = "GiRaFFE_NRPy_prims_to_cons"
    outCfunction(
        outfile=os.path.join(out_dir, subdir, name + ".h"),
        desc=desc,
        name=name,
        params="const paramstruct *params,REAL *auxevol_gfs,REAL *in_gfs",
        body=fin.FD_outputC("returnstring", values_to_print,
                            params=outCparams).replace("IDX4", "IDX4S"),
        loopopts="AllPoints",
        rel_path_for_Cparams=os.path.join("../"))

    # Write out the main driver itself:
    with open(os.path.join(out_dir, "GiRaFFE_NRPy_Main_Driver.h"),
              "w") as file:
        file.write(r"""// Structure to track ghostzones for PPM:
typedef struct __gf_and_gz_struct__ {
  REAL *gf;
  int gz_lo[4],gz_hi[4];
} gf_and_gz_struct;
// Some additional constants needed for PPM:
const int VX=0,VY=1,VZ=2,BX=3,BY=4,BZ=5;
const int NUM_RECONSTRUCT_GFS = 6;

// Include ALL functions needed for evolution
#include "RHSs/calculate_AD_gauge_term_psi6Phi_flux_term_for_RHSs.h"
#include "RHSs/calculate_AD_gauge_psi6Phi_RHSs.h"
#include "PPM/reconstruct_set_of_prims_PPM_GRFFE_NRPy.c"
#include "FCVAL/interpolate_metric_gfs_to_cell_faces.h"
#include "RHSs/calculate_StildeD0_source_term.h"
#include "RHSs/calculate_StildeD1_source_term.h"
#include "RHSs/calculate_StildeD2_source_term.h"
#include "../calculate_E_field_flat_all_in_one.h"
#include "RHSs/calculate_Stilde_flux_D0.h"
#include "RHSs/calculate_Stilde_flux_D1.h"
#include "RHSs/calculate_Stilde_flux_D2.h"
#include "boundary_conditions/GiRaFFE_boundary_conditions.h"
#include "A2B/driver_AtoB.h"
#include "C2P/GiRaFFE_NRPy_cons_to_prims.h"
#include "C2P/GiRaFFE_NRPy_prims_to_cons.h"

void override_BU_with_old_GiRaFFE(const paramstruct *restrict params,REAL *restrict auxevol_gfs,const int n) {
#include "set_Cparameters.h"
    char filename[100];
    sprintf(filename,"BU0_override-%08d.bin",n);
    FILE *out2D = fopen(filename, "rb");
    fread(auxevol_gfs+BU0GF*Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,
          sizeof(double),Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,out2D);
    fclose(out2D);
    sprintf(filename,"BU1_override-%08d.bin",n);
    out2D = fopen(filename, "rb");
    fread(auxevol_gfs+BU1GF*Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,
          sizeof(double),Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,out2D);
    fclose(out2D);
    sprintf(filename,"BU2_override-%08d.bin",n);
    out2D = fopen(filename, "rb");
    fread(auxevol_gfs+BU2GF*Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,
          sizeof(double),Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2,out2D);
    fclose(out2D);
}

void GiRaFFE_NRPy_RHSs(const paramstruct *restrict params,REAL *restrict auxevol_gfs,const REAL *restrict in_gfs,REAL *restrict rhs_gfs) {
#include "set_Cparameters.h"
    // First thing's first: initialize the RHSs to zero!
#pragma omp parallel for
    for(int ii=0;ii<Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2*NUM_EVOL_GFS;ii++) {
        rhs_gfs[ii] = 0.0;
    }
    // Next calculate the easier source terms that don't require flux directions
    // This will also reset the RHSs for each gf at each new timestep.
    calculate_AD_gauge_term_psi6Phi_flux_term_for_RHSs(params,in_gfs,auxevol_gfs);
    calculate_AD_gauge_psi6Phi_RHSs(params,in_gfs,auxevol_gfs,rhs_gfs);

    // Now, we set up a bunch of structs of pointers to properly guide the PPM algorithm.
    // They also count the number of ghostzones available.
    gf_and_gz_struct in_prims[NUM_RECONSTRUCT_GFS], out_prims_r[NUM_RECONSTRUCT_GFS], out_prims_l[NUM_RECONSTRUCT_GFS];
    int which_prims_to_reconstruct[NUM_RECONSTRUCT_GFS],num_prims_to_reconstruct;
    const int Nxxp2NG012 = Nxx_plus_2NGHOSTS0*Nxx_plus_2NGHOSTS1*Nxx_plus_2NGHOSTS2;

    REAL *temporary = auxevol_gfs + Nxxp2NG012*AEVOLPARENGF; //We're not using this anymore
    // This sets pointers to the portion of auxevol_gfs containing the relevant gridfunction.
    int ww=0;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*VALENCIAVU0GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_RU0GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_LU0GF;
    ww++;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*VALENCIAVU1GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_RU1GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_LU1GF;
    ww++;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*VALENCIAVU2GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_RU2GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*VALENCIAV_LU2GF;
    ww++;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*BU0GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*B_RU0GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*B_LU0GF;
    ww++;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*BU1GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*B_RU1GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*B_LU1GF;
    ww++;
    in_prims[ww].gf      = auxevol_gfs + Nxxp2NG012*BU2GF;
      out_prims_r[ww].gf = auxevol_gfs + Nxxp2NG012*B_RU2GF;
      out_prims_l[ww].gf = auxevol_gfs + Nxxp2NG012*B_LU2GF;
    ww++;

    // Prims are defined AT ALL GRIDPOINTS, so we set the # of ghostzones to zero:
    for(int i=0;i<NUM_RECONSTRUCT_GFS;i++) for(int j=1;j<=3;j++) { in_prims[i].gz_lo[j]=0; in_prims[i].gz_hi[j]=0; }
    // Left/right variables are not yet defined, yet we set the # of gz's to zero by default:
    for(int i=0;i<NUM_RECONSTRUCT_GFS;i++) for(int j=1;j<=3;j++) { out_prims_r[i].gz_lo[j]=0; out_prims_r[i].gz_hi[j]=0; }
    for(int i=0;i<NUM_RECONSTRUCT_GFS;i++) for(int j=1;j<=3;j++) { out_prims_l[i].gz_lo[j]=0; out_prims_l[i].gz_hi[j]=0; }

    ww=0;
    which_prims_to_reconstruct[ww]=VX; ww++;
    which_prims_to_reconstruct[ww]=VY; ww++;
    which_prims_to_reconstruct[ww]=VZ; ww++;
    which_prims_to_reconstruct[ww]=BX; ww++;
    which_prims_to_reconstruct[ww]=BY; ww++;
    which_prims_to_reconstruct[ww]=BZ; ww++;
    num_prims_to_reconstruct=ww;

    // In each direction, perform the PPM reconstruction procedure.
    // Then, add the fluxes to the RHS as appropriate.
    for(int flux_dirn=0;flux_dirn<3;flux_dirn++) {
        // In each direction, interpolate the metric gfs (gamma,beta,alpha) to cell faces.
        interpolate_metric_gfs_to_cell_faces(params,auxevol_gfs,flux_dirn+1);
        // Then, reconstruct the primitive variables on the cell faces.
        // This function is housed in the file: "reconstruct_set_of_prims_PPM_GRFFE_NRPy.c"
        reconstruct_set_of_prims_PPM_GRFFE_NRPy(params, auxevol_gfs, flux_dirn+1, num_prims_to_reconstruct,
                                                which_prims_to_reconstruct, in_prims, out_prims_r, out_prims_l, temporary);
        // For example, if flux_dirn==0, then at gamma_faceDD00(i,j,k) represents gamma_{xx}
        // at (i-1/2,j,k), Valenciav_lU0(i,j,k) is the x-component of the velocity at (i-1/2-epsilon,j,k),
        // and Valenciav_rU0(i,j,k) is the x-component of the velocity at (i-1/2+epsilon,j,k).

        if(flux_dirn==0) {
            // Next, we calculate the source term for StildeD. Again, this also resets the rhs_gfs array at
            // each new timestep.
            calculate_StildeD0_source_term(params,auxevol_gfs,rhs_gfs);
            // Now, compute the electric field on each face of a cell and add it to the RHSs as appropriate
            //calculate_E_field_D0_right(params,auxevol_gfs,rhs_gfs);
            //calculate_E_field_D0_left(params,auxevol_gfs,rhs_gfs);
            // Finally, we calculate the flux of StildeD and add the appropriate finite-differences
            // to the RHSs.
            calculate_Stilde_flux_D0(params,auxevol_gfs,rhs_gfs);
        }
        else if(flux_dirn==1) {
            calculate_StildeD1_source_term(params,auxevol_gfs,rhs_gfs);
            //calculate_E_field_D1_right(params,auxevol_gfs,rhs_gfs);
            //calculate_E_field_D1_left(params,auxevol_gfs,rhs_gfs);
            calculate_Stilde_flux_D1(params,auxevol_gfs,rhs_gfs);
        }
        else {
            calculate_StildeD2_source_term(params,auxevol_gfs,rhs_gfs);
            //calculate_E_field_D2_right(params,auxevol_gfs,rhs_gfs);
            //calculate_E_field_D2_left(params,auxevol_gfs,rhs_gfs);
            calculate_Stilde_flux_D2(params,auxevol_gfs,rhs_gfs);
        }
        for(int count=0;count<=1;count++) {
            // This function is written to be general, using notation that matches the forward permutation added to AD2,
            // i.e., [F_HLL^x(B^y)]_z corresponding to flux_dirn=0, count=1.
            // The SIGN parameter is necessary because
            // -E_z(x_i,y_j,z_k) = 0.25 ( [F_HLL^x(B^y)]_z(i+1/2,j,k)+[F_HLL^x(B^y)]_z(i-1/2,j,k)
            //                           -[F_HLL^y(B^x)]_z(i,j+1/2,k)-[F_HLL^y(B^x)]_z(i,j-1/2,k) )
            // Note the negative signs on the reversed permutation terms!

            // By cyclically permuting with flux_dirn, we
            // get contributions to the other components, and by incrementing count, we get the backward permutations:
            // Let's suppose flux_dirn = 0. Then we will need to update Ay (count=0) and Az (count=1):
            //     flux_dirn=count=0 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (0+1+0)%3=AD1GF <- Updating Ay!
            //        (flux_dirn)%3 = (0)%3 = 0               Vx
            //        (flux_dirn-count+2)%3 = (0-0+2)%3 = 2   Vz .  Inputs Vx, Vz -> SIGN = -1 ; 2.0*((REAL)count)-1.0=-1 check!
            //     flux_dirn=0,count=1 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (0+1+1)%3=AD2GF <- Updating Az!
            //        (flux_dirn)%3 = (0)%3 = 0               Vx
            //        (flux_dirn-count+2)%3 = (0-1+2)%3 = 1   Vy .  Inputs Vx, Vy -> SIGN = +1 ; 2.0*((REAL)count)-1.0=2-1=+1 check!
            // Let's suppose flux_dirn = 1. Then we will need to update Az (count=0) and Ax (count=1):
            //     flux_dirn=1,count=0 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (1+1+0)%3=AD2GF <- Updating Az!
            //        (flux_dirn)%3 = (1)%3 = 1               Vy
            //        (flux_dirn-count+2)%3 = (1-0+2)%3 = 0   Vx .  Inputs Vy, Vx -> SIGN = -1 ; 2.0*((REAL)count)-1.0=-1 check!
            //     flux_dirn=count=1 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (1+1+1)%3=AD0GF <- Updating Ax!
            //        (flux_dirn)%3 = (1)%3 = 1               Vy
            //        (flux_dirn-count+2)%3 = (1-1+2)%3 = 2   Vz .  Inputs Vy, Vz -> SIGN = +1 ; 2.0*((REAL)count)-1.0=2-1=+1 check!
            // Let's suppose flux_dirn = 2. Then we will need to update Ax (count=0) and Ay (count=1):
            //     flux_dirn=2,count=0 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (2+1+0)%3=AD0GF <- Updating Ax!
            //        (flux_dirn)%3 = (2)%3 = 2               Vz
            //        (flux_dirn-count+2)%3 = (2-0+2)%3 = 1   Vy .  Inputs Vz, Vy -> SIGN = -1 ; 2.0*((REAL)count)-1.0=-1 check!
            //     flux_dirn=2,count=1 -> AD0GF+(flux_dirn+1+count)%3 = AD0GF + (2+1+1)%3=AD1GF <- Updating Ay!
            //        (flux_dirn)%3 = (2)%3 = 2               Vz
            //        (flux_dirn-count+2)%3 = (2-1+2)%3 = 0   Vx .  Inputs Vz, Vx -> SIGN = +1 ; 2.0*((REAL)count)-1.0=2-1=+1 check!
            calculate_E_field_flat_all_in_one(params,
              &auxevol_gfs[IDX4ptS(VALENCIAV_RU0GF+(flux_dirn)%3, 0)],&auxevol_gfs[IDX4ptS(VALENCIAV_RU0GF+(flux_dirn-count+2)%3, 0)],
              &auxevol_gfs[IDX4ptS(VALENCIAV_LU0GF+(flux_dirn)%3, 0)],&auxevol_gfs[IDX4ptS(VALENCIAV_LU0GF+(flux_dirn-count+2)%3, 0)],
              &auxevol_gfs[IDX4ptS(B_RU0GF        +(flux_dirn)%3, 0)],&auxevol_gfs[IDX4ptS(B_RU0GF        +(flux_dirn-count+2)%3, 0)],
              &auxevol_gfs[IDX4ptS(B_LU0GF        +(flux_dirn)%3, 0)],&auxevol_gfs[IDX4ptS(B_LU0GF        +(flux_dirn-count+2)%3, 0)],
              &auxevol_gfs[IDX4ptS(B_RU0GF        +(flux_dirn-count+2)%3, 0)],
              &auxevol_gfs[IDX4ptS(B_LU0GF        +(flux_dirn-count+2)%3, 0)],
              &rhs_gfs[IDX4ptS(AD0GF+(flux_dirn+1+count)%3,0)], 2.0*((REAL)count)-1.0, flux_dirn);
        }
    }
}

void GiRaFFE_NRPy_post_step(const paramstruct *restrict params,REAL *xx[3],REAL *restrict auxevol_gfs,REAL *restrict evol_gfs,const int n) {
    // First, apply BCs to AD and psi6Phi. Then calculate BU from AD
    apply_bcs_potential(params,evol_gfs);
    driver_A_to_B(params,evol_gfs,auxevol_gfs);
    //override_BU_with_old_GiRaFFE(params,auxevol_gfs,n);
    // Apply fixes to StildeD, then recompute the velocity at the new timestep.
    // Apply the current sheet prescription to the velocities
    GiRaFFE_NRPy_cons_to_prims(params,xx,auxevol_gfs,evol_gfs);
    // Then, recompute StildeD to be consistent with the new velocities
    //GiRaFFE_NRPy_prims_to_cons(params,auxevol_gfs,evol_gfs);
    // Finally, apply outflow boundary conditions to the velocities.
    apply_bcs_velocity(params,auxevol_gfs);
}
""")
Example #23
0
def ScalarField_RHSs():

    # Step B.4: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step B.5: Import all basic (unrescaled) BSSN scalars & tensors
    Bq.BSSN_basic_tensors()
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU
    Bq.gammabar__inverse_and_derivs()
    gammabarUU = Bq.gammabarUU

    global sf_rhs, sfM_rhs

    # Step B.5.a: Declare grid functions for varphi and Pi
    sf, sfM = sfgfs.declare_scalar_field_gridfunctions_if_not_declared_already(
    )

    # Step 2.a: Add Term 1 to sf_rhs: -alpha*Pi
    sf_rhs = -alpha * sfM

    # Step 2.b: Add Term 2 to sf_rhs: beta^{i}\partial_{i}\varphi
    sf_dupD = ixp.declarerank1("sf_dupD")
    for i in range(DIM):
        sf_rhs += betaU[i] * sf_dupD[i]

    # Step 3a: Add Term 1 to sfM_rhs: alpha * K * Pi
    sfM_rhs = alpha * trK * sfM

    # Step 3b: Add Term 2 to sfM_rhs: beta^{i}\partial_{i}Pi
    sfM_dupD = ixp.declarerank1("sfM_dupD")
    for i in range(DIM):
        sfM_rhs += betaU[i] * sfM_dupD[i]

    # Step 3c: Adding Term 3 to sfM_rhs
    # Step 3c.i: Term 3a: gammabar^{ij}\partial_{i}\alpha\partial_{j}\varphi
    alpha_dD = ixp.declarerank1("alpha_dD")
    sf_dD = ixp.declarerank1("sf_dD")
    sfMrhsTerm3 = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -gammabarUU[i][j] * alpha_dD[i] * sf_dD[j]

    # Step 3c.ii: Term 3b: \alpha*gammabar^{ij}\partial_{i}\partial_{j}\varphi
    sf_dDD = ixp.declarerank2("sf_dDD", "sym01")
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -alpha * gammabarUU[i][j] * sf_dDD[i][j]

    # Step 3c.iii: Term 3c: 2*alpha*gammabar^{ij}\partial_{j}\varphi\partial_{i}\phi
    Bq.phi_and_derivs(
    )  # sets exp^{-4phi} = exp_m4phi and \partial_{i}phi = phi_dD[i]
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -2 * alpha * gammabarUU[i][j] * sf_dD[
                j] * Bq.phi_dD[i]

    # Step 3c.iv: Multiplying Term 3 by e^{-4phi} and adding it to sfM_rhs
    sfMrhsTerm3 *= Bq.exp_m4phi
    sfM_rhs += sfMrhsTerm3

    # Step 3d: Adding Term 4 to sfM_rhs
    # Step 3d.i: Term 4a: \alpha \bar\Lambda^{i}\partial_{i}\varphi
    LambdabarU = Bq.LambdabarU
    sfMrhsTerm4 = sp.sympify(0)
    for i in range(DIM):
        sfMrhsTerm4 += alpha * LambdabarU[i] * sf_dD[i]

    # Step 3d.ii: Evaluating \bar\gamma^{ij}\hat\Gamma^{k}_{ij}
    GammahatUDD = rfm.GammahatUDD
    gammabarGammahatContractionU = ixp.zerorank1()
    for k in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                gammabarGammahatContractionU[
                    k] += gammabarUU[i][j] * GammahatUDD[k][i][j]

    # Step 3d.iii: Term 4b: \alpha \bar\gamma^{ij}\hat\Gamma^{k}_{ij}\partial_{k}\varphi
    for i in range(DIM):
        sfMrhsTerm4 += alpha * gammabarGammahatContractionU[i] * sf_dD[i]

    # Step 3d.iii: Multplying Term 4 by e^{-4phi} and adding it to sfM_rhs
    sfMrhsTerm4 *= Bq.exp_m4phi
    sfM_rhs += sfMrhsTerm4

    return
Example #24
0
    def write_dfdr_function(self, Ccodesdir, fd_order=2):
        # function to write c code to calculate dfdr term in Sommerfeld boundary condition

        # Read what # of dimensions being usded
        DIM = par.parval_from_str("grid::DIM")

        # Set up the chosen reference metric from chosen coordinate system, set within NRPy+
        CoordSystem = par.parval_from_str("reference_metric::CoordSystem")
        rfm.reference_metric()

        # Simplifying the results make them easier to interpret.
        do_simplify = True
        if "Sinh" in CoordSystem:
            # Simplification takes too long on Sinh* coordinate systems
            do_simplify = False

        # Construct Jacobian matrix, output Jac_dUSph_dDrfmUD[i][j] = \partial x_{Sph}^i / \partial x^j:
        Jac_dUSph_dDrfmUD = ixp.zerorank2()
        for i in range(3):
            for j in range(3):
                Jac_dUSph_dDrfmUD[i][j] = sp.diff(rfm.xxSph[i], rfm.xx[j])

        # Invert Jacobian matrix, output to Jac_dUrfm_dDSphUD.
        Jac_dUrfm_dDSphUD, dummyDET = ixp.generic_matrix_inverter3x3(
            Jac_dUSph_dDrfmUD)

        # Jac_dUrfm_dDSphUD[i][0] stores \partial x^i / \partial r
        if do_simplify:
            for i in range(3):
                Jac_dUrfm_dDSphUD[i][0] = sp.simplify(Jac_dUrfm_dDSphUD[i][0])

        # Declare \partial_i f, which is actually computed later on
        fdD = ixp.declarerank1("fdD")  # = [fdD0, fdD1, fdD2]
        contraction = sp.sympify(0)
        for i in range(3):
            contraction += fdD[i] * Jac_dUrfm_dDSphUD[i][0]
        contraction = sp.simplify(contraction)

        r_str_and_contraction_str = outputC([rfm.xxSph[0], contraction],
                                            ["*_r", "*_partial_i_f"],
                                            filename="returnstring",
                                            params="includebraces=False")

        def gen_central_fd_stencil_str(intdirn, fd_order):
            if fd_order == 2:
                if intdirn == 0:
                    return "(gfs[IDX4S(which_gf,i0+1,i1,i2)]-gfs[IDX4S(which_gf,i0-1,i1,i2)])*0.5"  # Does not include the 1/dx multiplication
                elif intdirn == 1:
                    return "(gfs[IDX4S(which_gf,i0,i1+1,i2)]-gfs[IDX4S(which_gf,i0,i1-1,i2)])*0.5"  # Does not include the 1/dy multiplication
                elif intdirn == 2:
                    return "(gfs[IDX4S(which_gf,i0,i1,i2+1)]-gfs[IDX4S(which_gf,i0,i1,i2-1)])*0.5"  # Does not include the 1/dz multiplication

        def output_dfdx(intdirn, fd_order):
            dirn = str(intdirn)
            dirnp1 = str(
                (intdirn + 1) % 3
            )  # if dirn='0', then we want this to be '1'; '1' then '2'; and '2' then '0'
            dirnp2 = str(
                (intdirn + 2) % 3
            )  # if dirn='0', then we want this to be '2'; '1' then '0'; and '2' then '1'
            if fd_order == 2:
                return """
// On a +x""" + dirn + """ or -x""" + dirn + """ face, do up/down winding as appropriate:
if(abs(FACEXi[""" + dirn + """])==1 || i""" + dirn + """+NGHOSTS >= Nxx_plus_2NGHOSTS""" + dirn + """ || i""" + dirn + """-NGHOSTS <= 0) {
    int8_t SHIFTSTENCIL""" + dirn + """ = FACEXi[""" + dirn + """];
    if(i""" + dirn + """+NGHOSTS >= Nxx_plus_2NGHOSTS""" + dirn + """) SHIFTSTENCIL""" + dirn + """ = -1;
    if(i""" + dirn + """-NGHOSTS <= 0)                  SHIFTSTENCIL""" + dirn + """ = +1;
    SHIFTSTENCIL""" + dirnp1 + """ = 0;
    SHIFTSTENCIL""" + dirnp2 + """ = 0;

    fdD""" + dirn + """
        = SHIFTSTENCIL""" + dirn + """*(-1.5*gfs[IDX4S(which_gf,i0+0*SHIFTSTENCIL0,i1+0*SHIFTSTENCIL1,i2+0*SHIFTSTENCIL2)]
                         +2.*gfs[IDX4S(which_gf,i0+1*SHIFTSTENCIL0,i1+1*SHIFTSTENCIL1,i2+1*SHIFTSTENCIL2)]
                         -0.5*gfs[IDX4S(which_gf,i0+2*SHIFTSTENCIL0,i1+2*SHIFTSTENCIL1,i2+2*SHIFTSTENCIL2)]
                        )*invdx""" + dirn + """;

// Not on a +x""" + dirn + """ or -x""" + dirn + """ face, using centered difference:
} else {
    fdD""" + dirn + """ = """ + gen_central_fd_stencil_str(
                    intdirn, 2) + """*invdx""" + dirn + """;
}
"""
            else:
                print("Error: fd_order = " + str(fd_order) +
                      " currently unsupported.")
                sys.exit(1)

        contraction_term_func = """

void contraction_term(const paramstruct *restrict params, const int which_gf, const REAL *restrict gfs, REAL *restrict xx[3],
           const int8_t FACEXi[3], const int i0, const int i1, const int i2, REAL *restrict _r, REAL *restrict _partial_i_f) {

#include "RELATIVE_PATH__set_Cparameters.h" /* Header file containing correct #include for set_Cparameters.h;
                                             * accounting for the relative path */

// Initialize derivatives to crazy values, to ensure that
//   we will notice in case they aren't set properly.
REAL fdD0=1e100;
REAL fdD1=1e100;
REAL fdD2=1e100;

REAL xx0 = xx[0][i0];
REAL xx1 = xx[1][i1];
REAL xx2 = xx[2][i2];

int8_t SHIFTSTENCIL0;
int8_t SHIFTSTENCIL1;
int8_t SHIFTSTENCIL2;

"""
        for i in range(DIM):
            if "fdD" + str(i) in r_str_and_contraction_str:
                contraction_term_func += output_dfdx(i, fd_order)

        contraction_term_func += "\n" + r_str_and_contraction_str

        contraction_term_func += """
} // END contraction_term function
"""
        with open(
                os.path.join(Ccodesdir,
                             "boundary_conditions/radial_derivative.h"),
                "w") as file:
            file.write(contraction_term_func)
Example #25
0
def GiRaFFE_NRPy_Afield_flux(Ccodesdir):
    cmd.mkdir(Ccodesdir)
    # Write out the code to a file.

    gammaDD = ixp.declarerank2("gammaDD", "sym01", DIM=3)
    betaU = ixp.declarerank1("betaU", DIM=3)
    alpha = sp.sympify("alpha")

    for flux_dirn in range(3):
        chsp.find_cmax_cmin(flux_dirn, gammaDD, betaU, alpha)
        Ccode_kernel = outputC([chsp.cmax, chsp.cmin], ["cmax", "cmin"],
                               "returnstring",
                               params="outCverbose=False,CSE_sorting=none")
        Ccode_kernel = Ccode_kernel.replace("cmax",
                                            "*cmax").replace("cmin", "*cmin")
        Ccode_kernel = Ccode_kernel.replace("betaU0", "betaUi").replace(
            "betaU1", "betaUi").replace("betaU2", "betaUi")

        with open(
                os.path.join(Ccodesdir,
                             "compute_cmax_cmin_dirn" + str(flux_dirn) + ".h"),
                "w") as file:
            file.write(Ccode_kernel)

    with open(os.path.join(Ccodesdir, "calculate_E_field_flat_all_in_one.h"),
              "w") as file:
        file.write(
            r"""void find_cmax_cmin(const REAL gammaDD00, const REAL gammaDD01, const REAL gammaDD02,
                    const REAL gammaDD11, const REAL gammaDD12, const REAL gammaDD22,
                    const REAL betaUi, const REAL alpha, const int flux_dirn,
                    REAL *cmax, REAL *cmin) {
    switch(flux_dirn) {
        case 0:
#include "compute_cmax_cmin_dirn0.h"
            break;
        case 1:
#include "compute_cmax_cmin_dirn1.h"
            break;
        case 2:
#include "compute_cmax_cmin_dirn2.h"
            break;
        default:
            printf("Invalid parameter flux_dirn!"); *cmax = 1.0/0.0; *cmin = 1.0/0.0;
            break;
    }
}

REAL HLLE_solve(REAL F0B1_r, REAL F0B1_l, REAL U_r, REAL U_l, REAL cmin, REAL cmax) {
  // Eq. 3.15 of https://epubs.siam.org/doi/abs/10.1137/1025002?journalCode=siread
  // F_HLLE = (c_min F_R + c_max F_L - c_min c_max (U_R-U_L)) / (c_min + c_max)
  return (cmin*F0B1_r + cmax*F0B1_l - cmin*cmax*(U_r-U_l)) / (cmin+cmax);
}

/*
Calculate the electric flux on both faces in the input direction.
The input count is an integer that is either 0 or 1. If it is 0, this implies
that the components are input in order of a backwards permutation  and the final
results will need to be multiplied by -1.0. If it is 1, then the permutation is forwards.
 */
void calculate_E_field_flat_all_in_one(const paramstruct *params,
                                       const REAL *Vr0,const REAL *Vr1,
                                       const REAL *Vl0,const REAL *Vl1,
                                       const REAL *Br0,const REAL *Br1,
                                       const REAL *Bl0,const REAL *Bl1,
                                       const REAL *Brflux_dirn,
                                       const REAL *Blflux_dirn,
                                       const REAL *gamma_faceDD00, const REAL *gamma_faceDD01, const REAL *gamma_faceDD02,
                                       const REAL *gamma_faceDD11, const REAL *gamma_faceDD12, const REAL *gamma_faceDD22,
                                       const REAL *beta_faceU0, const REAL *beta_faceU1, const REAL *alpha_face,
                                       REAL *A2_rhs,const REAL SIGN,const int flux_dirn) {
    // This function is written to be generic and compute the contribution for all three AD RHSs.
    // However, for convenience, the notation used in the function itself is for the contribution
    // to AD2, specifically the [F_HLL^x(B^y)]_z term, with reconstructions in the x direction. This
    // corresponds to flux_dirn=0 and count=1 (which corresponds to SIGN=+1.0).
    // Thus, Az(i,j,k) += 0.25 ( [F_HLL^x(B^y)]_z(i+1/2,j,k)+[F_HLL^x(B^y)]_z(i-1/2,j,k)) are solved here.
    // The other terms are computed by cyclically permuting the indices when calling this function.
#include "../set_Cparameters.h"

#pragma omp parallel for
    for(int i2=NGHOSTS; i2<NGHOSTS+Nxx2; i2++) {
        for(int i1=NGHOSTS; i1<NGHOSTS+Nxx1; i1++) {
            for(int i0=NGHOSTS; i0<NGHOSTS+Nxx0; i0++) {
                // First, we set the index from which we will read memory. indexp1 is incremented by
                // one point in the direction of reconstruction. These correspond to the faces at at
                // i-1/2 and i+1/2, respectively.

                // Now, we read in memory. We need the x and y components of velocity and magnetic field on both
                // the left and right sides of the interface at *both* faces.
                // Here, the point (i0,i1,i2) corresponds to the point (i-1/2,j,k)
                const int index           = IDX3S(i0,i1,i2);
                const double alpha        = alpha_face[index];
                const double betaU0       = beta_faceU0[index];
                const double betaU1       = beta_faceU1[index];
                const double v_rU0        = alpha*Vr0[index]-betaU0;
                const double v_rU1        = alpha*Vr1[index]-betaU1;
                const double B_rU0        = Br0[index];
                const double B_rU1        = Br1[index];
                const double B_rflux_dirn = Brflux_dirn[index];
                const double v_lU0        = alpha*Vl0[index]-betaU0;
                const double v_lU1        = alpha*Vl1[index]-betaU1;
                const double B_lU0        = Bl0[index];
                const double B_lU1        = Bl1[index];
                const double B_lflux_dirn = Blflux_dirn[index];
                // We will also need need the square root of the metric determinant here at this point:
                const REAL gxx = gamma_faceDD00[index];
                const REAL gxy = gamma_faceDD01[index];
                const REAL gxz = gamma_faceDD02[index];
                const REAL gyy = gamma_faceDD11[index];
                const REAL gyz = gamma_faceDD12[index];
                const REAL gzz = gamma_faceDD22[index];
                const REAL sqrtgammaDET = sqrt( gxx*gyy*gzz
                                             -  gxx*gyz*gyz
                                             +2*gxy*gxz*gyz
                                             -  gyy*gxz*gxz
                                             -  gzz*gxy*gxy );

                // *******************************
                // REPEAT ABOVE, but at i+1, which corresponds to point (i+1/2,j,k)
                //     Recall that the documentation here assumes flux_dirn==0, but the
                //     algorithm is generalized so that any flux_dirn or velocity/magnetic
                //     field component can be computed via permuting the inputs into this
                //     function.
                const int indexp1            = IDX3S(i0+(flux_dirn==0),i1+(flux_dirn==1),i2+(flux_dirn==2));
                const double alpha_p1        = alpha_face[indexp1];
                const double betaU0_p1       = beta_faceU0[indexp1];
                const double betaU1_p1       = beta_faceU1[indexp1];
                const double v_rU0_p1        = alpha_p1*Vr0[indexp1]-betaU0_p1;
                const double v_rU1_p1        = alpha_p1*Vr1[indexp1]-betaU1_p1;
                const double B_rU0_p1        = Br0[indexp1];
                const double B_rU1_p1        = Br1[indexp1];
                const double B_rflux_dirn_p1 = Brflux_dirn[indexp1];
                const double v_lU0_p1        = alpha_p1*Vl0[indexp1]-betaU0_p1;
                const double v_lU1_p1        = alpha_p1*Vl1[indexp1]-betaU1_p1;
                const double B_lU0_p1        = Bl0[indexp1];
                const double B_lU1_p1        = Bl1[indexp1];
                const double B_lflux_dirn_p1 = Blflux_dirn[indexp1];
                // We will also need need the square root of the metric determinant here at this point:
                const REAL gxx_p1 = gamma_faceDD00[indexp1];
                const REAL gxy_p1 = gamma_faceDD01[indexp1];
                const REAL gxz_p1 = gamma_faceDD02[indexp1];
                const REAL gyy_p1 = gamma_faceDD11[indexp1];
                const REAL gyz_p1 = gamma_faceDD12[indexp1];
                const REAL gzz_p1 = gamma_faceDD22[indexp1];
                const REAL sqrtgammaDET_p1 = sqrt( gxx_p1*gyy_p1*gzz_p1
                                                -  gxx_p1*gyz_p1*gyz_p1
                                                +2*gxy_p1*gxz_p1*gyz_p1
                                                -  gyy_p1*gxz_p1*gxz_p1
                                                -  gzz_p1*gxy_p1*gxy_p1 );

                // *******************************

                // DEBUGGING:
//                 if(flux_dirn==0 && SIGN>0 && i1==Nxx_plus_2NGHOSTS1/2 && i2==Nxx_plus_2NGHOSTS2/2) {
//                     printf("index=%d & indexp1=%d\n",index,indexp1);
//                 }

                // Since we are computing A_z, the relevant equation here is:
                // -E_z(x_i,y_j,z_k) = 0.25 ( [F_HLL^x(B^y)]_z(i+1/2,j,k)+[F_HLL^x(B^y)]_z(i-1/2,j,k)
                //                           -[F_HLL^y(B^x)]_z(i,j+1/2,k)-[F_HLL^y(B^x)]_z(i,j-1/2,k) )
                // We will construct the above sum one half at a time, first with SIGN=+1, which
                // corresponds to flux_dirn = 0, count=1, and
                //  takes care of the terms:
                //  [F_HLL^x(B^y)]_z(i+1/2,j,k)+[F_HLL^x(B^y)]_z(i-1/2,j,k)

                // ( Note that we will repeat the above with flux_dirn = 1, count = 0, with SIGN=-1
                //   AND with the input components switched (x->y,y->x) so that we get the term
                // -[F_HLL^y(B^x)]_z(i,j+1/2,k)-[F_HLL^y(B^x)]_z(i,j-1/2,k)
                // thus completing the above sum. )

                // Here, [F_HLL^i(B^j)]_k = (v^i B^j - v^j B^i) in general.

                // Calculate the flux vector on each face for each component of the E-field:
                // The F(B) terms are as Eq. 6 in Giacomazzo: https://arxiv.org/pdf/1009.2468.pdf
                // [F^i(B^j)]_k = \sqrt{\gamma} (v^i B^j - v^j B^i)
                // Therefore since we want [F_HLL^x(B^y)]_z,
                // we will code     (v^x           B^y   - v^y           B^x) on both left and right faces.
                const REAL F0B1_r = sqrtgammaDET*(v_rU0*B_rU1 - v_rU1*B_rU0);
                const REAL F0B1_l = sqrtgammaDET*(v_lU0*B_lU1 - v_lU1*B_lU0);

                // Compute the state vector for these terms:
                const REAL U_r = B_rflux_dirn;
                const REAL U_l = B_lflux_dirn;

                REAL cmin,cmax;
                // Basic HLLE solver:
                find_cmax_cmin(gxx,gxy,gxz,
                               gyy,gyz,gzz,
                               betaU0,alpha,flux_dirn,
                               &cmax, &cmin);
                const REAL FHLL_0B1 = HLLE_solve(F0B1_r, F0B1_l, U_r, U_l, cmin, cmax);

                // ************************************
                // ************************************
                // REPEAT ABOVE, but at point i+1
                // Calculate the flux vector on each face for each component of the E-field:
                const REAL F0B1_r_p1 = sqrtgammaDET_p1*(v_rU0_p1*B_rU1_p1 - v_rU1_p1*B_rU0_p1);
                const REAL F0B1_l_p1 = sqrtgammaDET_p1*(v_lU0_p1*B_lU1_p1 - v_lU1_p1*B_lU0_p1);

                // Compute the state vector for this flux direction
                const REAL U_r_p1 = B_rflux_dirn_p1;
                const REAL U_l_p1 = B_lflux_dirn_p1;
                //const REAL U_r_p1 = B_rU1_p1;
                //const REAL U_l_p1 = B_lU1_p1;
                // Basic HLLE solver, but at the next point:
                find_cmax_cmin(gxx_p1,gxy_p1,gxz_p1,
                               gyy_p1,gyz_p1,gzz_p1,
                               betaU0_p1,alpha_p1,flux_dirn,
                               &cmax, &cmin);
                const REAL FHLL_0B1p1 = HLLE_solve(F0B1_r_p1, F0B1_l_p1, U_r_p1, U_l_p1, cmin, cmax);
                // ************************************
                // ************************************


                // With the Riemann problem solved, we add the contributions to the RHSs:
                // -E_z(x_i,y_j,z_k) &= 0.25 ( [F_HLL^x(B^y)]_z(i+1/2,j,k)+[F_HLL^x(B^y)]_z(i-1/2,j,k)
                //                            -[F_HLL^y(B^x)]_z(i,j+1/2,k)-[F_HLL^y(B^x)]_z(i,j-1/2,k) )
                // (Eq. 11 in https://arxiv.org/pdf/1009.2468.pdf)
                // This code, as written, solves the first two terms for flux_dirn=0. Calling this function for count=0
                // and flux_dirn=1 flips x for y to solve the latter two, switching to SIGN=-1 as well.

                // Here, we finally add together the output of the HLLE solver at i-1/2 and i+1/2
                // We also multiply by the SIGN dictated by the order of the input vectors and divide by 4.
                A2_rhs[index] += SIGN*0.25*(FHLL_0B1 + FHLL_0B1p1);
                // flux dirn = 0 ===================>   i-1/2       i+1/2
                //               Eq 11 in Giacomazzo:
                //               -FxBy(avg over i-1/2 and i+1/2) + FyBx(avg over j-1/2 and j+1/2)
                //               Eq 6 in Giacomazzo:
                //               FxBy = vxBy - vyBx
                //             ->
                //               FHLL_0B1 = vyBx - vxBy

            } // END LOOP: for(int i0=NGHOSTS; i0<NGHOSTS+Nxx0; i0++)
        } // END LOOP: for(int i1=NGHOSTS; i1<NGHOSTS+Nxx1; i1++)
    } // END LOOP: for(int i2=NGHOSTS; i2<NGHOSTS+Nxx2; i2++)
}
""")
Example #26
0
    def BSSN_RHSs__generate_symbolic_expressions():
        ######################################
        # START: GENERATE SYMBOLIC EXPRESSIONS
        print("Generating symbolic expressions for BSSN RHSs...")
        start = time.time()
        # Enable rfm_precompute infrastructure, which results in
        #   BSSN RHSs that are free of transcendental functions,
        #   even in curvilinear coordinates, so long as
        #   ConformalFactor is set to "W" (default).
        par.set_parval_from_str("reference_metric::enable_rfm_precompute","True")
        par.set_parval_from_str("reference_metric::rfm_precompute_Ccode_outdir",os.path.join(outdir,"rfm_files/"))

        # Evaluate BSSN + BSSN gauge RHSs with rfm_precompute enabled:
        import BSSN.BSSN_quantities as Bq
        par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic","True")

        rhs.BSSN_RHSs()

        if T4UU != None:
            import BSSN.BSSN_stress_energy_source_terms as Bsest
            Bsest.BSSN_source_terms_for_BSSN_RHSs(T4UU)
            rhs.trK_rhs += Bsest.sourceterm_trK_rhs
            for i in range(3):
                # Needed for Gamma-driving shift RHSs:
                rhs.Lambdabar_rhsU[i] += Bsest.sourceterm_Lambdabar_rhsU[i]
                # Needed for BSSN RHSs:
                rhs.lambda_rhsU[i]    += Bsest.sourceterm_lambda_rhsU[i]
                for j in range(3):
                    rhs.a_rhsDD[i][j] += Bsest.sourceterm_a_rhsDD[i][j]

        gaugerhs.BSSN_gauge_RHSs()

        # Add Kreiss-Oliger dissipation to the BSSN RHSs:
        thismodule = "KO_Dissipation"
        diss_strength = par.Cparameters("REAL", thismodule, "diss_strength", default_KO_strength)

        alpha_dKOD = ixp.declarerank1("alpha_dKOD")
        cf_dKOD    = ixp.declarerank1("cf_dKOD")
        trK_dKOD   = ixp.declarerank1("trK_dKOD")
        betU_dKOD    = ixp.declarerank2("betU_dKOD","nosym")
        vetU_dKOD    = ixp.declarerank2("vetU_dKOD","nosym")
        lambdaU_dKOD = ixp.declarerank2("lambdaU_dKOD","nosym")
        aDD_dKOD = ixp.declarerank3("aDD_dKOD","sym01")
        hDD_dKOD = ixp.declarerank3("hDD_dKOD","sym01")
        for k in range(3):
            gaugerhs.alpha_rhs += diss_strength*alpha_dKOD[k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
            rhs.cf_rhs         += diss_strength*   cf_dKOD[k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
            rhs.trK_rhs        += diss_strength*  trK_dKOD[k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
            for i in range(3):
                if "2ndOrder" in ShiftCondition:
                    gaugerhs.bet_rhsU[i] += diss_strength*   betU_dKOD[i][k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
                gaugerhs.vet_rhsU[i]     += diss_strength*   vetU_dKOD[i][k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
                rhs.lambda_rhsU[i]       += diss_strength*lambdaU_dKOD[i][k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
                for j in range(3):
                    rhs.a_rhsDD[i][j] += diss_strength*aDD_dKOD[i][j][k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]
                    rhs.h_rhsDD[i][j] += diss_strength*hDD_dKOD[i][j][k]*rfm.ReU[k] # ReU[k] = 1/scalefactor_orthog_funcform[k]

        # We use betaU as our upwinding control vector:
        Bq.BSSN_basic_tensors()
        betaU = Bq.betaU

        # Now that we are finished with all the rfm hatted
        #           quantities in generic precomputed functional
        #           form, let's restore them to their closed-
        #           form expressions.
        par.set_parval_from_str("reference_metric::enable_rfm_precompute","False") # Reset to False to disable rfm_precompute.
        rfm.ref_metric__hatted_quantities()
        par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic","False")
        end = time.time()
        print("(BENCH) Finished BSSN RHS symbolic expressions in "+str(end-start)+" seconds.")
        # END: GENERATE SYMBOLIC EXPRESSIONS
        ######################################

        BSSN_RHSs_SymbExpressions = [lhrh(lhs=gri.gfaccess("rhs_gfs","aDD00"),   rhs=rhs.a_rhsDD[0][0]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","aDD01"),   rhs=rhs.a_rhsDD[0][1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","aDD02"),   rhs=rhs.a_rhsDD[0][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","aDD11"),   rhs=rhs.a_rhsDD[1][1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","aDD12"),   rhs=rhs.a_rhsDD[1][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","aDD22"),   rhs=rhs.a_rhsDD[2][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","alpha"),   rhs=gaugerhs.alpha_rhs),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","betU0"),   rhs=gaugerhs.bet_rhsU[0]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","betU1"),   rhs=gaugerhs.bet_rhsU[1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","betU2"),   rhs=gaugerhs.bet_rhsU[2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","cf"),      rhs=rhs.cf_rhs),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD00"),   rhs=rhs.h_rhsDD[0][0]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD01")   ,rhs=rhs.h_rhsDD[0][1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD02"),   rhs=rhs.h_rhsDD[0][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD11"),   rhs=rhs.h_rhsDD[1][1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD12"),   rhs=rhs.h_rhsDD[1][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","hDD22"),   rhs=rhs.h_rhsDD[2][2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","lambdaU0"),rhs=rhs.lambda_rhsU[0]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","lambdaU1"),rhs=rhs.lambda_rhsU[1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","lambdaU2"),rhs=rhs.lambda_rhsU[2]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","trK"),     rhs=rhs.trK_rhs),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","vetU0"),   rhs=gaugerhs.vet_rhsU[0]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","vetU1"),   rhs=gaugerhs.vet_rhsU[1]),
                                     lhrh(lhs=gri.gfaccess("rhs_gfs","vetU2"),   rhs=gaugerhs.vet_rhsU[2]) ]

        return [betaU,BSSN_RHSs_SymbExpressions]
Example #27
0
def ADM_in_terms_of_BSSN():
    global gammaDD, gammaDDdD, gammaDDdDD, gammaUU, detgamma, GammaUDD, KDD, KDDdD
    # Step 1.c: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    import BSSN.BSSN_quantities as Bq
    Bq.BSSN_basic_tensors()
    gammabarDD = Bq.gammabarDD
    cf         = Bq.cf
    AbarDD     = Bq.AbarDD
    trK        = Bq.trK

    Bq.gammabar__inverse_and_derivs()
    gammabarDD_dD  = Bq.gammabarDD_dD
    gammabarDD_dDD = Bq.gammabarDD_dDD

    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()
    AbarDD_dD = Bq.AbarDD_dD

    # Step 2: The ADM three-metric gammaDD and its
    #         derivatives in terms of BSSN quantities.
    gammaDD = ixp.zerorank2()

    exp4phi = sp.sympify(0)
    if par.parval_from_str("EvolvedConformalFactor_cf") == "phi":
        exp4phi = sp.exp(4 * cf)
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "chi":
        exp4phi = (1 / cf)
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "W":
        exp4phi = (1 / cf ** 2)
    else:
        print("Error EvolvedConformalFactor_cf type = \"" + par.parval_from_str("EvolvedConformalFactor_cf") + "\" unknown.")
        sys.exit(1)

    for i in range(DIM):
        for j in range(DIM):
            gammaDD[i][j] = exp4phi * gammabarDD[i][j]

    # Step 2.a: Derivatives of $e^{4\phi}$
    phidD = ixp.zerorank1()
    phidDD = ixp.zerorank2()
    cf_dD  = ixp.declarerank1("cf_dD")
    cf_dDD = ixp.declarerank2("cf_dDD","sym01")
    if par.parval_from_str("EvolvedConformalFactor_cf") == "phi":
        for i in range(DIM):
            phidD[i]  = cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = cf_dDD[i][j]
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "chi":
        for i in range(DIM):
            phidD[i]  = -sp.Rational(1,4)*exp4phi*cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = sp.Rational(1,4)*( exp4phi**2*cf_dD[i]*cf_dD[j] - exp4phi*cf_dDD[i][j] )
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "W":
        exp2phi = (1 / cf)
        for i in range(DIM):
            phidD[i]  = -sp.Rational(1,2)*exp2phi*cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = sp.Rational(1,2)*( exp4phi*cf_dD[i]*cf_dD[j] - exp2phi*cf_dDD[i][j] )
    else:
        print("Error EvolvedConformalFactor_cf type = \""+par.parval_from_str("EvolvedConformalFactor_cf")+"\" unknown.")
        sys.exit(1)

    exp4phidD  = ixp.zerorank1()
    exp4phidDD = ixp.zerorank2()
    for i in range(DIM):
        exp4phidD[i] = 4*exp4phi*phidD[i]
        for j in range(DIM):
            exp4phidDD[i][j] = 16*exp4phi*phidD[i]*phidD[j] + 4*exp4phi*phidDD[i][j]

    # Step 2.b: Derivatives of gammaDD, the ADM three-metric
    gammaDDdD = ixp.zerorank3()
    gammaDDdDD = ixp.zerorank4()

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                gammaDDdD[i][j][k] = exp4phidD[k] * gammabarDD[i][j] + exp4phi * gammabarDD_dD[i][j][k]
                for l in range(DIM):
                    gammaDDdDD[i][j][k][l] = exp4phidDD[k][l] * gammabarDD[i][j] + \
                                             exp4phidD[k] * gammabarDD_dD[i][j][l] + \
                                             exp4phidD[l] * gammabarDD_dD[i][j][k] + \
                                             exp4phi * gammabarDD_dDD[i][j][k][l]

    # Step 2.c: 3-Christoffel symbols associated with ADM 3-metric gammaDD
    # Step 2.c.i: First compute the inverse 3-metric gammaUU:
    gammaUU, detgamma = ixp.symm_matrix_inverter3x3(gammaDD)

    GammaUDD = ixp.zerorank3()

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    GammaUDD[i][j][k] += sp.Rational(1,2)*gammaUU[i][l]* \
                                    (gammaDDdD[l][j][k] + gammaDDdD[l][k][j] - gammaDDdD[j][k][l])
                    
    # Step 3: Define ADM extrinsic curvature KDD and
    #         its first spatial derivatives KDDdD
    #         in terms of BSSN quantities
    KDD = ixp.zerorank2()

    for i in range(DIM):
        for j in range(DIM):
            KDD[i][j] = exp4phi * AbarDD[i][j] + sp.Rational(1, 3) * gammaDD[i][j] * trK

    KDDdD = ixp.zerorank3()
    trK_dD = ixp.declarerank1("trK_dD")
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                KDDdD[i][j][k] = exp4phidD[k] * AbarDD[i][j] + exp4phi * AbarDD_dD[i][j][k] + \
                                 sp.Rational(1, 3) * (gammaDDdD[i][j][k] * trK + gammaDD[i][j] * trK_dD[k])
Example #28
0
def GiRaFFEfood_NRPy_Exact_Wald():

    # <a id='step2'></a>
    #
    # ### Step 2: Set the vectors A and E in Spherical coordinates
    # $$\label{step2}$$
    #
    # \[Back to [top](#top)\]
    #
    # We will first build the fundamental vectors $A_i$ and $E_i$ in spherical coordinates (see [Table 3](https://arxiv.org/pdf/1704.00599.pdf)). Note that we use reference_metric.py to set $r$ and $\theta$ in terms of Cartesian coordinates; this will save us a step later when we convert to Cartesian coordinates. Since $C_0 = 1$,
    # \begin{align}
    # A_{\phi} &= \frac{1}{2} r^2 \sin^2 \theta \\
    # E_{\phi} &= 2 M \left( 1+ \frac {2M}{r} \right)^{-1/2} \sin^2 \theta. \\
    # \end{align}
    # While we have $E_i$ set as a variable in NRPy+, note that the final C code won't store these values.

    # Step 2: Set the vectors A and E in Spherical coordinates

    r = rfm.xxSph[
        0] + KerrSchild_radial_shift  # We are setting the data up in Shifted Kerr-Schild coordinates
    theta = rfm.xxSph[1]

    # Initialize all components of A and E in the *spherical basis* to zero
    ASphD = ixp.zerorank1()
    ESphD = ixp.zerorank1()
    ASphD[2] = (r * r * sp.sin(theta)**2) / 2
    ESphD[2] = 2 * M * sp.sin(theta)**2 / sp.sqrt(1 + 2 * M / r)

    # <a id='step3'></a>
    #
    # ### Step 3: Use the Jacobian matrix to transform the vectors to Cartesian coordinates.
    # $$\label{step3}$$
    #
    # \[Back to [top](#top)\]
    #
    # Now, we will use the coordinate transformation definitions provided by reference_metric.py to build the Jacobian
    # $$
    # \frac{\partial x_{\rm Sph}^j}{\partial x_{\rm Cart}^i},
    # $$
    # where $x_{\rm Sph}^j \in \{r,\theta,\phi\}$ and $x_{\rm Cart}^i \in \{x,y,z\}$. We would normally compute its inverse, but since none of the quantities we need to transform have upper indices, it is not necessary. Then, since both $A_i$ and $E_i$ have one lower index, both will need to be multiplied by the Jacobian:
    #
    # $$
    # A_i^{\rm Cart} = A_j^{\rm Sph} \frac{\partial x_{\rm Sph}^j}{\partial x_{\rm Cart}^i},
    # $$

    # Step 3: Use the Jacobian matrix to transform the vectors to Cartesian coordinates.
    drrefmetric__dx_0UDmatrix = sp.Matrix([[
        sp.diff(rfm.xxSph[0], rfm.xx[0]),
        sp.diff(rfm.xxSph[0], rfm.xx[1]),
        sp.diff(rfm.xxSph[0], rfm.xx[2])
    ],
                                           [
                                               sp.diff(rfm.xxSph[1],
                                                       rfm.xx[0]),
                                               sp.diff(rfm.xxSph[1],
                                                       rfm.xx[1]),
                                               sp.diff(rfm.xxSph[1], rfm.xx[2])
                                           ],
                                           [
                                               sp.diff(rfm.xxSph[2],
                                                       rfm.xx[0]),
                                               sp.diff(rfm.xxSph[2],
                                                       rfm.xx[1]),
                                               sp.diff(rfm.xxSph[2], rfm.xx[2])
                                           ]])
    #dx__drrefmetric_0UDmatrix = drrefmetric__dx_0UDmatrix.inv() # We don't actually need this in this case.

    global AD
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL", "AD")
    ED = ixp.zerorank1()

    for i in range(3):
        for j in range(3):
            AD[i] = drrefmetric__dx_0UDmatrix[(j, i)] * ASphD[j]
            ED[i] = drrefmetric__dx_0UDmatrix[(j, i)] * ESphD[j]

    #Step 4: Declare the basic spacetime quantities
    alpha = sp.symbols("alpha", real=True)
    betaU = ixp.declarerank1("betaU", DIM=3)
    gammaDD = ixp.declarerank2("gammaDD", "sym01", DIM=3)

    import GRHD.equations as GRHD
    GRHD.compute_sqrtgammaDET(gammaDD)

    # <a id='step4'></a>
    #
    # ### Step 4: Calculate $v^i$ from $A_i$ and $E_i$
    # $$\label{step4}$$
    #
    # \[Back to [top](#top)\]
    #
    # We will now find the magnetic field using equation 18 in [the original paper](https://arxiv.org/pdf/1704.00599.pdf) $$B^i = \frac{[ijk]}{\sqrt{\gamma}} \partial_j A_k. $$ We will need the metric quantites: the lapse $\alpha$, the shift $\beta^i$, and the three-metric $\gamma_{ij}$. We will also need the Levi-Civita symbol, provided by $\text{WeylScal4NRPy}$.

    # Step 4: Calculate v^i from A_i and E_i
    # Step 4a: Calculate the magnetic field B^i
    # Here, we build the Levi-Civita tensor from the Levi-Civita symbol.
    # Here, we build the Levi-Civita tensor from the Levi-Civita symbol.
    import WeylScal4NRPy.WeylScalars_Cartesian as weyl
    LeviCivitaSymbolDDD = weyl.define_LeviCivitaSymbol_rank3()
    LeviCivitaTensorUUU = ixp.zerorank3()
    for i in range(3):
        for j in range(3):
            for k in range(3):
                LeviCivitaTensorUUU[i][j][
                    k] = LeviCivitaSymbolDDD[i][j][k] / GRHD.sqrtgammaDET

    # For the initial data, we can analytically take the derivatives of A_i
    ADdD = ixp.zerorank2()
    for i in range(3):
        for j in range(3):
            ADdD[i][j] = sp.simplify(sp.diff(AD[i], rfm.xxCart[j]))

    #global BU
    BU = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            for k in range(3):
                BU[i] += LeviCivitaTensorUUU[i][j][k] * ADdD[k][j]

    # We will now build the initial velocity using equation 152 in [this paper,](https://arxiv.org/pdf/1310.3274v2.pdf) cited in the original $\texttt{GiRaFFE}$ code: $$ v^i = \alpha \frac{\epsilon^{ijk} E_j B_k}{B^2} -\beta^i. $$
    # However, our code needs the Valencia 3-velocity while this expression is for the drift velocity. So, we will need to transform it to the Valencia 3-velocity using the rule $\bar{v}^i = \frac{1}{\alpha} \left(v^i +\beta^i \right)$.
    # Thus, $$\bar{v}^i = \frac{\epsilon^{ijk} E_j B_k}{B^2}$$

    # Step 4b: Calculate B^2 and B_i
    # B^2 is an inner product defined in the usual way:
    B2 = sp.sympify(0)
    for i in range(3):
        for j in range(3):
            B2 += gammaDD[i][j] * BU[i] * BU[j]

    # Lower the index on B^i
    BD = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            BD[i] += gammaDD[i][j] * BU[j]

    # Step 4c: Calculate the Valencia 3-velocity
    global ValenciavU
    ValenciavU = ixp.zerorank1()
    for i in range(3):
        for j in range(3):
            for k in range(3):
                ValenciavU[
                    i] += LeviCivitaTensorUUU[i][j][k] * ED[j] * BD[k] / B2
def BSSN_constraints(add_T4UUmunu_source_terms=False):
    # Step 1.a: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.b: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 2: Hamiltonian constraint.
    # First declare all needed variables
    Bq.declare_BSSN_gridfunctions_if_not_declared_already()  # Sets trK
    Bq.BSSN_basic_tensors()  # Sets AbarDD
    Bq.gammabar__inverse_and_derivs()  # Sets gammabarUU
    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()  # Sets AbarUU and AbarDD_dD
    Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()  # Sets RbarDD
    Bq.phi_and_derivs()  # Sets phi_dBarD & phi_dBarDD

    ###############################
    ###############################
    #  HAMILTONIAN CONSTRAINT
    ###############################
    ###############################

    # Term 1: 2/3 K^2
    global H
    H = sp.Rational(2, 3) * Bq.trK**2

    # Term 2: -A_{ij} A^{ij}
    for i in range(DIM):
        for j in range(DIM):
            H += -Bq.AbarDD[i][j] * Bq.AbarUU[i][j]

    # Term 3a: trace(Rbar)
    Rbartrace = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            Rbartrace += Bq.gammabarUU[i][j] * Bq.RbarDD[i][j]

    # Term 3b: -8 \bar{\gamma}^{ij} \bar{D}_i \phi \bar{D}_j \phi = -8*phi_dBar_times_phi_dBar
    # Term 3c: -8 \bar{\gamma}^{ij} \bar{D}_i \bar{D}_j \phi      = -8*phi_dBarDD_contraction
    phi_dBar_times_phi_dBar = sp.sympify(0)  # Term 3b
    phi_dBarDD_contraction = sp.sympify(0)  # Term 3c
    for i in range(DIM):
        for j in range(DIM):
            phi_dBar_times_phi_dBar += Bq.gammabarUU[i][j] * Bq.phi_dBarD[
                i] * Bq.phi_dBarD[j]
            phi_dBarDD_contraction += Bq.gammabarUU[i][j] * Bq.phi_dBarDD[i][j]

    # Add Term 3:
    H += Bq.exp_m4phi * (Rbartrace - 8 *
                         (phi_dBar_times_phi_dBar + phi_dBarDD_contraction))

    if add_T4UUmunu_source_terms:
        M_PI = par.Cparameters("#define", thismodule, "M_PI",
                               "")  # M_PI is pi as defined in C
        BTmunu.define_BSSN_T4UUmunu_rescaled_source_terms()
        rho = BTmunu.rho
        H += -16 * M_PI * rho

    # FIXME: ADD T4UUmunu SOURCE TERMS TO MOMENTUM CONSTRAINT!

    # Step 3: M^i, the momentum constraint

    ###############################
    ###############################
    #  MOMENTUM CONSTRAINT
    ###############################
    ###############################

    # SEE Tutorial-BSSN_constraints.ipynb for full documentation.
    global MU
    MU = ixp.zerorank1()

    # Term 2: 6 A^{ij} \partial_j \phi:
    for i in range(DIM):
        for j in range(DIM):
            MU[i] += 6 * Bq.AbarUU[i][j] * Bq.phi_dD[j]

    # Term 3: -2/3 \bar{\gamma}^{ij} K_{,j}
    trK_dD = ixp.declarerank1(
        "trK_dD")  # Not defined in BSSN_RHSs; only trK_dupD is defined there.
    for i in range(DIM):
        for j in range(DIM):
            MU[i] += -sp.Rational(2, 3) * Bq.gammabarUU[i][j] * trK_dD[j]

    # First define aDD_dD:
    aDD_dD = ixp.declarerank3("aDD_dD", "sym01")

    # Then evaluate the conformal covariant derivative \bar{D}_j \bar{A}_{lm}
    AbarDD_dBarD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                AbarDD_dBarD[i][j][k] = Bq.AbarDD_dD[i][j][k]
                for l in range(DIM):
                    AbarDD_dBarD[i][j][
                        k] += -Bq.GammabarUDD[l][k][i] * Bq.AbarDD[l][j]
                    AbarDD_dBarD[i][j][
                        k] += -Bq.GammabarUDD[l][k][j] * Bq.AbarDD[i][l]

    # Term 1: Contract twice with the metric to make \bar{D}_{j} \bar{A}^{ij}
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    MU[i] += Bq.gammabarUU[i][k] * Bq.gammabarUU[j][
                        l] * AbarDD_dBarD[k][l][j]

    # Finally, we multiply by e^{-4 phi} and rescale the momentum constraint:
    for i in range(DIM):
        MU[i] *= Bq.exp_m4phi / rfm.ReU[i]
def VacuumMaxwellRHSs_rescaled():
    global erhsU, arhsU, psi_rhs, Gamma_rhs, C, G, EU_Cart, AU_Cart

    #Step 0: Set the spatial dimension parameter to 3.
    par.set_parval_from_str("grid::DIM", 3)
    DIM = par.parval_from_str("grid::DIM")

    # Set reference metric related quantities
    rfm.reference_metric()

    # Register gridfunctions that are needed as input.

    #  Declare the rank-1 indexed expressions E^{i}, A^{i},
    #  and \partial^{i} \psi, that are to be evolved in time.
    #  Derivative variables like these must have an underscore
    #  in them, so the finite difference module can parse
    #  the variable name properly.

    # e^i
    eU = ixp.register_gridfunctions_for_single_rank1("EVOL", "eU")

    # \partial_k ( E^i ) --> rank two tensor
    eU_dD = ixp.declarerank2("eU_dD", "nosym")

    # a^i
    aU = ixp.register_gridfunctions_for_single_rank1("EVOL", "aU")

    # \partial_k ( a^i ) --> rank two tensor
    aU_dD = ixp.declarerank2("aU_dD", "nosym")

    # \partial_k partial_m ( a^i ) --> rank three tensor
    aU_dDD = ixp.declarerank3("aU_dDD", "sym12")

    # \psi is a scalar function that is time evolved
    # psi is unused here
    _psi = gri.register_gridfunctions("EVOL", ["psi"])

    # \Gamma is a scalar function that is time evolved
    Gamma = gri.register_gridfunctions("EVOL", ["Gamma"])

    # \partial_i \psi
    psi_dD = ixp.declarerank1("psi_dD")

    # \partial_i \Gamma
    Gamma_dD = ixp.declarerank1("Gamma_dD")

    # partial_i \partial_j \psi
    psi_dDD = ixp.declarerank2("psi_dDD", "sym01")

    ghatUU = rfm.ghatUU
    GammahatUDD = rfm.GammahatUDD
    GammahatUDDdD = rfm.GammahatUDDdD
    ReU = rfm.ReU
    ReUdD = rfm.ReUdD
    ReUdDD = rfm.ReUdDD

    # \partial_t a^i = -e^i - \frac{\hat{g}^{ij}\partial_j \varphi}{\text{ReU}[i]}
    arhsU = ixp.zerorank1()
    for i in range(DIM):
        arhsU[i] -= eU[i]
        for j in range(DIM):
            arhsU[i] -= (ghatUU[i][j] * psi_dD[j]) / ReU[i]

    # A^i

    AU = ixp.zerorank1()

    # \partial_k ( A^i ) --> rank two tensor
    AU_dD = ixp.zerorank2()

    # \partial_k partial_m ( A^i ) --> rank three tensor
    AU_dDD = ixp.zerorank3()

    for i in range(DIM):
        AU[i] = aU[i] * ReU[i]
        for j in range(DIM):
            AU_dD[i][j] = aU_dD[i][j] * ReU[i] + aU[i] * ReUdD[i][j]
            for k in range(DIM):
                AU_dDD[i][j][k] = aU_dDD[i][j][k]*ReU[i] + aU_dD[i][j]*ReUdD[i][k] +\
                                  aU_dD[i][k]*ReUdD[i][j] + aU[i]*ReUdDD[i][j][k]

    # Term 1 = \hat{g}^{ij}\partial_j \Gamma
    Term1U = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            Term1U[i] += ghatUU[i][j] * Gamma_dD[j]

    # Term 2: A^i_{,kj}
    Term2UDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Term2UDD[i][j][k] += AU_dDD[i][k][j]

    # Term 3: \hat{\Gamma}^i_{mk,j} A^m + \hat{\Gamma}^i_{mk} A^m_{,j}
    #        + \hat{\Gamma}^i_{dj}A^d_{,k} - \hat{\Gamma}^d_{kj} A^i_{,d}
    Term3UDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    Term3UDD[i][j][k] += GammahatUDDdD[i][m][k][j]*AU[m]    \
                                          + GammahatUDD[i][m][k]*AU_dD[m][j] \
                                          + GammahatUDD[i][m][j]*AU_dD[m][k] \
                                          - GammahatUDD[m][k][j]*AU_dD[i][m]
    # Term 4: \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} A^m -
    #         \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} A^m
    Term4UDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    for d in range(DIM):
                        Term4UDD[i][j][k] += ( GammahatUDD[i][d][j]*GammahatUDD[d][m][k] \
                                               -GammahatUDD[d][k][j]*GammahatUDD[i][m][d])*AU[m]

    # \partial_t E^i = \hat{g}^{ij}\partial_j \Gamma - \hat{\gamma}^{jk}*
    #    (A^i_{,kj}
    #   + \hat{\Gamma}^i_{mk,j} A^m + \hat{\Gamma}^i_{mk} A^m_{,j}
    #   + \hat{\Gamma}^i_{dj} A^d_{,k} - \hat{\Gamma}^d_{kj} A^i_{,d}
    #   + \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} A^m
    #   - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} A^m)

    ErhsU = ixp.zerorank1()
    for i in range(DIM):
        ErhsU[i] += Term1U[i]
        for j in range(DIM):
            for k in range(DIM):
                ErhsU[i] -= ghatUU[j][k] * (
                    Term2UDD[i][j][k] + Term3UDD[i][j][k] + Term4UDD[i][j][k])

    erhsU = ixp.zerorank1()
    for i in range(DIM):
        erhsU[i] = ErhsU[i] / ReU[i]

    # \partial_t \Gamma = -\hat{g}^{ij} (\partial_i \partial_j \varphi -
    # \hat{\Gamma}^k_{ji} \partial_k \varphi)
    Gamma_rhs = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            Gamma_rhs -= ghatUU[i][j] * psi_dDD[i][j]
            for k in range(DIM):
                Gamma_rhs += ghatUU[i][j] * GammahatUDD[k][j][i] * psi_dD[k]

    # \partial_t \varphi = -\Gamma
    psi_rhs = -Gamma

    # \mathcal{G} \equiv \Gamma - \partial_i A^i + \hat{\Gamma}^i_{ji} A^j
    G = Gamma
    for i in range(DIM):
        G -= AU_dD[i][i]
        for j in range(DIM):
            G += GammahatUDD[i][j][i] * AU[j]

    # E^i
    EU = ixp.zerorank1()

    EU_dD = ixp.zerorank2()
    for i in range(DIM):
        EU[i] = eU[i] * ReU[i]
        for j in range(DIM):
            EU_dD[i][j] = eU_dD[i][j] * ReU[i] + eU[i] * ReUdD[i][j]

    C = sp.sympify(0)
    for i in range(DIM):
        C += EU_dD[i][i]
        for j in range(DIM):
            C += GammahatUDD[i][j][i] * EU[j]

    def Convert_to_Cartesian_basis(VU):
        # Coordinate transformation from original basis to Cartesian
        rfm.reference_metric()

        VU_Cart = ixp.zerorank1()
        Jac_dxCartU_dxOrigD = ixp.zerorank2()
        for i in range(DIM):
            for j in range(DIM):
                Jac_dxCartU_dxOrigD[i][j] = sp.diff(rfm.xxCart[i], rfm.xx[j])

        for i in range(DIM):
            for j in range(DIM):
                VU_Cart[i] += Jac_dxCartU_dxOrigD[i][j] * VU[j]
        return VU_Cart

    AU_Cart = Convert_to_Cartesian_basis(AU)
    EU_Cart = Convert_to_Cartesian_basis(EU)