Example #1
0
def case3():
    y0 = [[5, 5, 5], [2, 2, 2]]
    stepsize = 0.01
    maxorder = 2
    boundary_order = 1
    num_mode = 2
    T = 5
    ep = 0.01
    mergeep = 0.01
    method = 'merge'

    t_list, y_list = simulation_ode_2(get_fvdp3(0), get_event1(0), y0, T,
                                      stepsize)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    print("start")
    x0 = np.zeros(num_mode * A.shape[1] * b.shape[1])
    re = infer_optimizationm(x0, A, b, num_mode)
    print(re.fun)
    print(re.success)
    print(re.x)
    A, b1, b2, Y, ytuple = diff_method_backandfor(t_list, y_list, maxorder,
                                                  stepsize)
    A, b1, b2, _ = seg_droprow(A, b1, b2, ep)
    x0 = np.zeros(num_mode * A.shape[1] * b1.shape[1])
    re = infer_optimizationm(x0, A, b1, num_mode)
    print(re.fun)
    print(re.success)
    print(re.x)
Example #2
0
def case2():
    y0 = [[5, 5, 5], [2, 2, 2]]
    stepsize = 0.01
    maxorder = 2
    boundary_order = 1
    num_mode = 2
    T = 5
    ep = 0.01
    mergeep = 0.01
    method = 'merge'

    t_list, y_list = simulation_ode_2(get_fvdp3(0), get_event1(0), y0, T,
                                      stepsize)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/A2.txt", A, fmt='%8f')
    np.savetxt("data/b2.txt", b, fmt='%8f')
    # print(y_list)

    # P,G,C = infer_model(
    #             t_list, y_list, stepsize=stepsize, maxorder=maxorder, boundary_order=boundary_order,
    #             num_mode=num_mode, modelist=fvdp3, event=event1, ep=ep, mergeep= mergeep, method=method, verbose=False)

    y1 = [[3, 3, 3], [4, 4, 4]]
    t_test_list, y_test_list = simulation_ode_2(get_fvdp3(0), get_event1(0),
                                                y0, T, stepsize)
    YT, FT = diff(t_list + t_test_list, y_list + y_test_list, dynamics.fvdp3_3)
    # np.savetxt("data/YT"+str(n)+".txt",YT,fmt='%8f')
    # np.savetxt("data/FT"+str(n)+".txt",FT,fmt='%8f')
    np.savetxt("data/YT2.txt", YT, fmt='%8f')
    np.savetxt("data/FT2.txt", FT, fmt='%8f')
Example #3
0
def case3():
    y0 = [[5,5,5],[2,2,2]]
    t_tuple = 5
    stepsize = 0.01
    maxorder = 2
    t_list, y_list = simulation_ode(fvdp3_3, y0, t_tuple, stepsize, eps=0)
    draw3D(y_list)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    # A, b1, b2, Y = diff_method_backandfor(t_list, y_list, maxorder, stepsize)
    # print(b1)
    # print(b2)
    P,G,D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, 0.02)
    print(P)
    print(G)
    print(D)
Example #4
0
def case():
    y0 = [[5, 5, 5], [2, 2, 2]]
    stepsize = 0.01
    maxorder = 2
    T = 5
    t_list, y_list = simulation_ode(fvdp3_1, y0, T, stepsize, eps=0.02)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    clf = linear_model.LinearRegression(fit_intercept=False)
    clf.fit(A, b)
    g = clf.coef_
    print(g)
    A, b, Y = diff_method_new_6(t_list, y_list, maxorder, stepsize)
    clf.fit(A, b)
    g = clf.coef_
    print(g)
Example #5
0
def case1():
    np.random.seed(0)
    modetr = get_modetr(0)
    event = get_event(0)
    labeltest = get_labeltest(0)
    y0 = [[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]]
    # y1 = [[3,-1], [-1,3]]
    T = 5
    stepsize = 0.005
    maxorder = 2
    boundary_order = 1
    num_mode = 5
    ep = 0.005
    mergeep = 0.01
    t_list, y_list = simulation_ode_3(modetr, event, labeltest, y0, T,
                                      stepsize)
    # A, b1, b2, Y, ytuple = diff_method_backandfor(t_list, y_list, maxorder, stepsize)
    # res, drop, clfs = segment_and_fit(A, b1, b2, ytuple,ep=0.005)
    # np.savetxt("data/YY.txt",Y,fmt='%8f')
    # print(len(res))
    # print(res)
    # P, G = merge_cluster_tol2(res, A, b1, num_mode, ep)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/YY.txt", Y, fmt='%8f')
    P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, ep)
    # print(P)
    print(len(P))
    if len(P) > num_mode:
        P, G = merge_cluster_tol2(P, A, b, num_mode, ep)
    P, _ = dropclass0(P, G, D, A, b, Y, ep, stepsize)
    print(P)
    print(len(P))
    L_y = len(y_list[0][0])
    boundary = svm_classify(P, Y, L_y, boundary_order, num_mode)
    print(boundary)
    d = test_model(P,
                   G,
                   boundary,
                   num_mode,
                   y_list,
                   modetr,
                   event,
                   maxorder,
                   boundary_order,
                   labeltest=labeltest)
    print(d)
Example #6
0
def case2():
    mode2 = get_mode2(0)
    event1 = get_event1(0)
    y0 = [[99.5, 80], [97.5, 100]]
    y1 = [[100.5, 90], [96, 80]]
    stepsize = 0.1
    maxorder = 1
    boundary_order = 1
    num_mode = 2
    T = 50
    ep = 0.01
    mergeep = 0.01
    method = 'piecelinear'
    t_list, y_list = simulation_ode_2(mode2, event1, y0, T, stepsize, noise=0)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/A1.txt", A, fmt='%8f')
    np.savetxt("data/b1.txt", b, fmt='%8f')
Example #7
0
def case1():
    y0 = [[4, 0.1, 3.1, 0], [5.9, 0.2, -3, 0], [4.1, 0.5, 2, 0],
          [6, 0.7, 2, 0]]
    y0_test = [[4.6, 0.13, 2, 0], [5.3, 0.17, -2, 0]]
    T = 5
    stepsize = 0.01
    ep = 0.01
    maxorder = 2
    boundary_order = 1
    num_mode = 2
    method = 'tolmerge'
    t_list, y_list = simulation_ode_2(mmode, event1, y0, T, stepsize)
    t_test_list, y_test_list = simulation_ode_2(mmode, event1, y0_test, T,
                                                stepsize)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/A4.txt", A, fmt='%8f')
    np.savetxt("data/b4.txt", b, fmt='%8f')
    YT, FT = diff(t_list + t_test_list, y_list + y_test_list, dynamics.modeex4)
    np.savetxt("data/YT4.txt", YT, fmt='%8f')
    np.savetxt("data/FT4.txt", FT, fmt='%8f')
Example #8
0
def case(y0, t_tuple, stepsize, maxorder, modelist, event, ep, method):
    t_list, y_list = simulation_ode_2(modelist, event, y0, t_tuple, stepsize)

    if method == "new":

        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          0.01)
        P, D = dropclass(P, G, D, A, b, Y, 0.01, stepsize)
        # print(len(P))
        print(G)
        y = []
        x = []

        for j in range(0, len(P[0])):
            y.append(1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1], 3: Y[P[0][j], 2]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1], 3: Y[P[1][j], 2]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 10 -r 1 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file', m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()
        g = -m.rho[0]
        a1 = 0
        a2 = 0
        a3 = 0
        for i in range(0, nsv):
            a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
            a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
            a3 = a3 + svc[i][0] * 0.5 * sv[i][3]
            g = g + svc[i][0]

        print(a1 / a1, a2 / a1, a3 / a1, g / a1)

        def f(x):
            return a1 * x[0] + a2 * x[1] + a3 * x[2] + g > 0

        @eventAttr()
        def eventtest(t, y):
            y0, y1, y2 = y
            return a1 * y0 + a2 * y1 + a3 * y2 + g

        ttest_list, ytest_list = simulation_ode_2(
            [ode_test(G[0], maxorder),
             ode_test(G[1], maxorder)], eventtest, y0, t_tuple, stepsize)
        ax = plt.axes(projection='3d')
        for temp_y in y_list[0:1]:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            y2_list = temp_y.T[2]
            ax.plot3D(y0_list, y1_list, y2_list, c='b')
        for temp_y in ytest_list[0:1]:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            y2_list = temp_y.T[2]
            ax.plot3D(y0_list, y1_list, y2_list, c='r')
        plt.show()

    sum = 0
    num = 0

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            if event(0, ypoints[i]) > 0:
                exact = modelist[0](0, ypoints[i])
            else:
                exact = modelist[1](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num
Example #9
0
def case(y0, t_tuple, stepsize, maxorder, modelist, event, ep, method):
    t_list, y_list = simulation_ode_2(modelist, event, y0, t_tuple, stepsize)

    if method == "new":

        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          0.01)
        P, D = dropclass(P, G, D, A, b, Y, 0.01, stepsize)
        # print(len(P))
        # print(G)

        y = []
        x = []

        for j in range(0, len(P[0])):
            y.append(1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 2 -r 1 -c 10 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file', m)
        # p_label, p_acc, p_val = svm_predict(y, x, m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()

        def f(x):
            g = -m.rho[0]
            for i in range(0, nsv):
                g = g + svc[i][0] * (0.5 *
                                     (x[0] * sv[i][1] + x[1] * sv[i][2]) +
                                     1)**2
            return g > 0

    sum = 0
    num = 0

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            if event(0, ypoints[i]) > 0:
                exact = modelist[0](0, ypoints[i])
            else:
                exact = modelist[1](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num
Example #10
0
def case10():
    y0 = [[-1,1],[1,4],[2,-3]]
    t_tuple = [(0,5),(0,5),(0,5)]
    stepsize = 0.01
    maxorder = 2
    # start = time.time()
    def labeltest(y):
        if eventtr_1(0,y)<0 and eventtr_2(0,y)>0:
            return 0
        elif eventtr_1(0,y)>=0 and eventtr_2(0,y)>0:
            return 1
        else:
            return 2

    t_list, y_list = simulation_ode_3([modetr_1, modetr_2, modetr_3], [eventtr_1,eventtr_2,eventtr_2], labeltest, y0, t_tuple, stepsize)
    draw2D(y_list)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    P,G,D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, 0.01)
    print(P)
    print(G)
    print(D)
    # for p in P:
    #     print(len(p))
    # tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    
    # for temp in tpar_list:
    #     print(temp[-1])
    # labels = infer_dynamic_modes_ex_dbs(tpar_list, ypar_list, stepsize, maxorder, 0.02)
    # print(labels)
    # draw2D(ypar_list)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    
    P,G = reclass(A,b,P,0.01)
    for p in P:
        print(len(p))
    print(G)

    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    P,D = dropclass(P,G,D,A,b,Y,0.01,0.01)
    print(D)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    # plt.show()
    
    y=[]
    x=[]

    for j in range(0,len(P[2])):
        y.append(1)
        x.append({1:Y[P[2][j],0], 2:Y[P[2][j],1]})
    
    for j in range(0,len(P[1])):
        y.append(-1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g = -m.rho[0]
    a1 = 0
    a2 = 0
    for i in range(0,nsv):
        a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
        a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
        g = g + svc[i][0]*1
    print(a1)
    print(a2)
    print(g)

    def f(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g

    x=[]
    y=[]

    for j in range(0,len(P[1])):
        y.append(1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g1 = -m.rho[0]
    b1 = 0
    b2 = 0
    for i in range(0,nsv):
        b1 = b1 + svc[i][0] * 0.5 * sv[i][1]
        b2 = b2 + svc[i][0] * 0.5 * sv[i][2]
        g1 = g1 + svc[i][0]*1
    # print(a1)
    # print(a2)
    # print(g)

    def h(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g
    x = np.linspace(-10,10,100)
    y = np.linspace(-10,10,100)
    
    X,Y = np.meshgrid(x,y)#将x,y指传入网格中
    # plt.contourf(X,Y,f(X,Y),8,alpha=0.75,cmap=plt.cm.hot)#8指图中的8+1根线,绘制等温线,其中cmap指颜色
    
    C = plt.contour(X,Y,f(X,Y),[0])#colors指等高线颜色
    plt.clabel(C,inline=True,fontsize=10)#inline=True指字体在等高线中
    D = plt.contour(X,Y,h(X,Y),[0])#colors指等高线颜色
    plt.clabel(D,inline=True,fontsize=10)#inline=True指字体在等高线中
    
    plt.xticks(())
    plt.yticks(())
    plt.show()
Example #11
0
def case1():
    # y0 = [[1,3],[-1,-2],[-3,-5],[2,4]]
    # t_tuple = [(0,20),(0,10),(0,15),(0,15)]
    y0 = [[1,3],[-1,-2]]
    t_tuple = 20
    stepsize = 0.01
    order = 2
    maxorder = 2
    # start = time.time()
    t_list, y_list = simulation_ode(mode2_1, y0, t_tuple, stepsize, eps=0)

    # for temp_y in y_list:
    #     y0_list = temp_y.T[0]
    #     y1_list = temp_y.T[1]
    #     plt.plot(y0_list,y1_list,'b')
    # plt.show()
    
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    P,G,D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, 0.01)
    
    print(P)
    print(G)
    print(D)
    y = []
    x = []

    for j in range(0,len(P[0])):
        y.append(1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})
    
    for j in range(0,len(P[1])):
        y.append(-1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 10 -b 0 ')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    yt = [-1,-1,1,1]
    xt = [{1:1, 2:1},{1:-1, 2:1},{1:1, 2:-1},{1:-1, 2:-1}]
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g = -m.rho[0]
    a1 = 0
    a2 = 0
    for i in range(0,nsv):
        a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
        a2 = a2 + svc[i][0] * 0.5 * sv[i][2]

    print("a1",a1/a1)
    print("a2",a2/a1)
    print("g",g/a1)
    
    
    
 
    # ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap='rainbow')
    # plt.show()
    dim = G[0].shape[0]
    A = generate_complete_polynomial(dim,maxorder)
    def odepre(t,y):
        # print("in")
        basicf = []
        for i in range(0,A.shape[0]):
            ap = 1
            for j in range(0,A.shape[1]):
                ap = ap*(y[j]**A[i][j])
            basicf.append(ap)
        b = np.array(basicf)
        dydt = np.zeros(dim)
        if a1 * y[0] + a2 * y[1] + g > 0: 
            for l in range(0,dim):
                dydt[l] = G[0][l].dot(b)
        else:
            for l in range(0,dim):
                dydt[l] = G[1][l].dot(b)
        # print("out")
        return dydt
    py0 = [[2,4],[-1,-3]]
    pt_tuple = [(0,10),(0,10)]
    start = time.time()
    print("origin")
    tp_list, yp_list = simulation_ode(mode2_1, py0, pt_tuple, stepsize, eps=0)
    end1 = time.time()
    print("predict")
    tpre_list, ypre_list = simulation_ode(odepre, py0, pt_tuple, stepsize, eps=0)
    end2 = time.time()
    print("simutime",end1-start)
    print("predtime",end2-end1)

    for temp_y in yp_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    for temp_y in ypre_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'r')
    plt.show()
Example #12
0
def case(y0, t_tuple, stepsize, maxorder, modelist, eventlist, labeltest, ep,
         method):
    t_list, y_list = simulation_ode_3(modelist, eventlist, labeltest, y0,
                                      t_tuple, stepsize)

    if method == "new":
        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          ep)
        P, G = reclass(A, b, P, ep)
        P, D = dropclass(P, G, D, A, b, Y, ep, stepsize)
        print(G)

        for i in range(0, len(P)):
            y0_list = []
            y1_list = []
            for j in range(0, len(P[i])):
                y0_list.append(Y[P[i][j], 0])
                y1_list.append(Y[P[i][j], 1])

            plt.scatter(y0_list, y1_list, s=1)
        plt.show()

        y = []
        x = []

        for j in range(0, len(P[2])):
            y.append(1)
            x.append({1: Y[P[2][j], 0], 2: Y[P[2][j], 1]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        for j in range(0, len(P[0])):
            y.append(-1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file1', m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()
        g = -m.rho[0]
        a1 = 0
        a2 = 0
        for i in range(0, nsv):
            a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
            a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
            g = g + svc[i][0] * 1
        print(a1 / a2, a2 / a2, g / a2)

        def f(x):
            g = -m.rho[0]
            for i in range(0, nsv):
                g = g + svc[i][0] * (0.5 *
                                     (x[0] * sv[i][1] + x[1] * sv[i][2]) + 1)
            return g > 0

        x = []
        y = []

        for j in range(0, len(P[1])):
            y.append(1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        for j in range(0, len(P[0])):
            y.append(-1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0 -q')
        n = svm_train(prob, param)
        svm_save_model('model_file2', n)
        # p_label, p_acc, p_val = svm_predict(y, x, n)
        nsv1 = n.get_nr_sv()
        svc1 = n.get_sv_coef()
        sv1 = n.get_SV()
        g1 = -n.rho[0]
        b1 = 0
        b2 = 0
        for i in range(0, nsv1):
            b1 = b1 + svc1[i][0] * 0.5 * sv1[i][1]
            b2 = b2 + svc1[i][0] * 0.5 * sv1[i][2]
            g1 = g1 + svc1[i][0] * 1
        print(b1 / b1, b2 / b1, g1 / b1)

        def h(x):
            g = -n.rho[0]
            for i in range(0, nsv1):
                g = g + svc1[i][0] * (0.5 *
                                      (x[0] * sv1[i][1] + x[1] * sv1[i][2]) +
                                      1)
            return g > 0

        @eventAttr()
        def eventtest1(t, y):
            y0, y1 = y
            return a1 * y0 + a2 * y1 + g

        @eventAttr()
        def eventtest2(t, y):
            y0, y1 = y
            return b1 * y0 + b2 * y1 + g1

        def labeltesttest(y):
            if eventtest1(0, y) > 0:
                return 2
            elif eventtest2(0, y) > 0:
                return 1
            else:
                return 0

        ttest_list, ytest_list = simulation_ode_3([
            ode_test(G[0], maxorder),
            ode_test(G[1], maxorder),
            ode_test(G[2], maxorder)
        ], [eventtest1, eventtest2], labeltesttest, y0, t_tuple, stepsize)

        for temp_y in y_list:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            plt.plot(y0_list, y1_list, c='b')
        for temp_y in ytest_list:
            y0_list = temp_y.T[0]
            y1_list = temp_y.T[1]
            plt.plot(y0_list, y1_list, c='r')
        plt.show()

    sum = 0
    num = 0

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            exact = modelist[labeltest(ypoints[i])](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[2].T)
            elif h(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num
Example #13
0
def compare(id, eid, case_id, verbose=False):
    np.random.seed(0)

    if eid == 'A':
        case_info = experiment1.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment1.get_mode2(params)
        event = experiment1.get_event1(params)
        maxorder = 1
        boundary_order = 1
        num_mode = 2
        ep = 0.01
        mergeep = 0.01
        dy = dynamics.mode2t

    elif eid == 'B':
        case_info = experiment2.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment2.get_fvdp3(params)
        event = experiment2.get_event1(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.fvdp3_3

    elif eid == 'C':
        case_info = experiment3.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment3.get_mode(params)
        event = experiment3.get_event(params)
        maxorder = 3
        boundary_order = 2
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex3

    elif eid == 'D':
        case_info = experiment4.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment4.get_mmode(params)
        event = experiment4.get_event(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 2
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modeex4

    elif eid == 'E':
        case_info = experiment5.cases[case_id]
        params = case_info['params']
        y0 = case_info['y0']
        y0_test = case_info['y0_test']
        T = case_info['t_tuple']
        stepsize = case_info['stepsize']
        modelist = experiment5.get_modetr(params)
        event = experiment5.get_event(params)
        labeltest = experiment5.get_labeltest(params)
        maxorder = 2
        boundary_order = 1
        num_mode = 3
        ep = case_info['ep']
        mergeep = case_info['mergeep']
        dy = dynamics.modetrt

    # Obtain simulated trajectory
    start = time.time()
    if num_mode == 2:
        t_list, y_list = simulation_ode_2(modelist, event, y0, T, stepsize)
        test_t_list, test_y_list = simulation_ode_2(modelist, event, y0_test,
                                                    T, stepsize)
    elif num_mode == 3:
        t_list, y_list = simulation_ode_3(modelist, event, labeltest, y0, T,
                                          stepsize)
        test_t_list, test_y_list = simulation_ode_3(modelist, event, labeltest,
                                                    y0_test, T, stepsize)
    else:
        raise NotImplementedError
    end = time.time()
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    np.savetxt("data/CA" + str(id) + ".txt", A, fmt='%8f')
    np.savetxt("data/Cb" + str(id) + ".txt", b, fmt='%8f')
    YT, FT = diff(t_list + test_t_list, y_list + test_y_list, dy)
    np.savetxt("data/CYT" + str(id) + ".txt", YT, fmt='%8f')
    np.savetxt("data/CFT" + str(id) + ".txt", FT, fmt='%8f')
Example #14
0
def case(y0, t_tuple, stepsize, maxorder, modelist, event, ep, method):
    # print('Simulating')
    t_list, y_list = simulation_ode_2(modelist, event, y0, t_tuple, stepsize)
    draw2D(y_list)

    if method == "new":
        # print('Classifying')
        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          ep)
        P, G = reclass(A, b, P, ep)
        print(G)
        P, D = dropclass(P, G, D, A, b, Y, ep, stepsize)
        # print('Number of modes:', len(P))

        y = []
        x = []

        for j in range(0, len(P[0])):
            y.append(1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 10 -r 1 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file', m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()
        g = -m.rho[0]
        a1 = 0
        a2 = 0
        for i in range(0, nsv):
            a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
            a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
            g = g + svc[i][0]

        def f(x):
            return a1 * x[0] + a2 * x[1] + g > 0

        print(a1 / a1, a2 / a1, g / a1)

    sum = 0
    num = 0

    @eventAttr()
    def eventtest(t, y):
        y0, y1 = y
        return a1 * y0 + a2 * y1 + g

    ttest_list, ytest_list = simulation_ode_2(
        [ode_test(G[0], maxorder),
         ode_test(G[1], maxorder)], eventtest, y0, t_tuple, stepsize)
    for i, temp_y in enumerate(y_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list, y1_list, c='b', label='Original')
        else:
            plt.plot(y0_list, y1_list, c='b')
    for i, temp_y in enumerate(ytest_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list, y1_list, c='r', label='Inferred')
        else:
            plt.plot(y0_list, y1_list, c='r')
    plt.xlabel('x1')
    plt.ylabel('x2')
    plt.legend()
    plt.show()

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            if event(0, ypoints[i]) > 0:
                exact = modelist[0](0, ypoints[i])
            else:
                exact = modelist[1](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num