from inference import Infer
from models.AlbuNet.AlbuNet import AlbuNet
import segmentation_models_pytorch as smp

inferer = Infer(threshold=0.75)
model = smp.Unet("se_resnext50_32x4d", classes=6)
model.cuda()
inferer.inference(model)
Example #2
0
                                        video_transforms,
                                        is_train=False)

        testloader = torch.utils.data.DataLoader(
            testdataset,
            batch_size=cfg.TRAIN.ST_BATCH_SIZE * num_gpu,
            drop_last=True,
            shuffle=False,
            num_workers=int(cfg.WORKERS))

        if args.eval_fid:
            algo = Infer(output_dir, 1.0)
            algo.eval_fid2(testloader, video_transforms, image_transforms)

        elif args.eval_fvd:
            algo = Infer(output_dir, 1.0)
            algo.eval_fvd(imageloader, storyloader, testloader, cfg.STAGE)

        elif args.load_ckpt != None:
            # For inference training result
            algo = Infer(output_dir, 1.0, args.load_ckpt)
            algo.inference(imageloader, storyloader, testloader, cfg.STAGE)
        else:
            # For training model
            algo = GANTrainer(output_dir, args, ratio=1.0)
            algo.train(imageloader, storyloader, testloader, cfg.STAGE)
    else:
        datapath = '%s/test/val_captions.t7' % (cfg.DATA_DIR)
        algo = GANTrainer(output_dir)
        algo.sample(datapath, cfg.STAGE)
from inference import Infer
from datetime import datetime
import os
import segmentation_models_pytorch as smp

inferer1 = Infer(
    rez_dir="inferred",
    image_folder="inferred2/overlay",
    batch_size=3,
    num_batches=2,
    batch_id=0,
)

inferer2 = Infer(
    rez_dir="inferred",
    image_folder="inferred2/overlay",
    batch_size=3,
    num_batches=2,
    batch_id=1,
)
model = smp.Unet("se_resnext50_32x4d")
model.cuda()
inferer1.inference(model)
inferer2.inference(model)