def test_standard_handling(self): assert get_input_schema(standard_py_func) == self.standard_sample_input_schema assert get_output_schema(standard_py_func) == self.standard_sample_output_schema
def test_spark_handling(self): assert get_input_schema(spark_func) == self.spark_sample_input_schema assert get_output_schema(spark_func) == self.spark_sample_output_schema
def test_pandas_handling(self): assert get_input_schema(pandas_func) == self.pandas_sample_input_schema assert get_output_schema(pandas_func) == self.pandas_sample_output_schema
def test_numpy_handling(self): assert get_input_schema(numpy_func) == self.numpy_sample_input_schema assert get_output_schema(numpy_func) == self.numpy_sample_output_schema
def test_nested_handling(self): assert ordered(get_input_schema(nested_func)) == ordered( self.nested_sample_input_schema) assert ordered(get_output_schema(nested_func)) == ordered( self.nested_sample_output_schema)
from inference_schema.schema_decorators import input_schema, output_schema from inference_schema.parameter_types.standard_py_parameter_type import StandardPythonParameterType # %% def init(): print("This is init") # %% @input_schema('data', StandardPythonParameterType('input data')) @output_schema(StandardPythonParameterType('test is inputdata')) def run(data): test = json.loads(data) print(f"received data {test}") return f"test is {test}" # %% from inference_schema import schema_util # %% schema_util.get_input_schema(run) # %% schema_util.get_output_schema(run) # %% schema_util.get_schemas_dict() # %% schema_util.is_schema_decorated(run) # %%