def test_3D_simple_(self): x = torch.autograd.Variable(torch.rand(1,3,20, 64,15)) model = bb.ResBlock(in_channels=3, out_channels=3, dim=3) xx = model(x) out_size = xx.size() self.assertEqual(list(out_size), [1,3, 20, 64, 15])
def test_2D_simple_3(self): x = torch.autograd.Variable(torch.rand(1,3,64,64)) model = bb.ResBlock(in_channels=3, out_channels=6, dim=2, size=4) xx = model(x) out_size = xx.size() self.assertEqual(list(out_size), [1,6, 64, 64])
def test_3D_simple_6(self): x = torch.autograd.Variable(torch.rand(1,6,64,64, 20)) model = bb.ResBlock(in_channels=6, batchnorm=False, out_channels=6, dim=3, size=4, force_skip_op=True, activated=False) xx = model(x) out_size = xx.size() self.assertEqual(list(out_size), [1,6, 64, 64, 20])