Example #1
0
inception_model = BinaryLogisticRegressionWithLBFGS(
    input_dim=input_dim,
    weight_decay=weight_decay,
    max_lbfgs_iter=max_lbfgs_iter,
    num_classes=num_classes,
    batch_size=batch_size,
    data_sets=data_sets,
    initial_learning_rate=initial_learning_rate,
    keep_probs=keep_probs,
    decay_epochs=decay_epochs,
    mini_batch=False,
    train_dir='output',
    log_dir='log',
    model_name='%s_inception_onlytop' % dataset_name)

inception_model.train()

inception_predicted_loss_diffs = inception_model.get_influence_on_test_loss(
    [test_idx],
    np.arange(len(inception_model.data_sets.train.labels)),
    force_refresh=True)

x_test = X_test[test_idx, :]
y_test = Y_test[test_idx]

distances = dataset.find_distances(x_test, X_train)
flipped_idx = Y_train != y_test
rbf_margins_test = rbf_model.sess.run(rbf_model.margin,
                                      feed_dict=rbf_model.all_test_feed_dict)
rbf_margins_train = rbf_model.sess.run(rbf_model.margin,
                                       feed_dict=rbf_model.all_train_feed_dict)
Example #2
0
    input_dim = 2048
    top_model = BinaryLogisticRegressionWithLBFGS(
        input_dim=input_dim,
        weight_decay=weight_decay,
        max_lbfgs_iter=max_lbfgs_iter,
        num_classes=num_classes,
        batch_size=batch_size,
        data_sets=inception_data_sets,
        initial_learning_rate=initial_learning_rate,
        keep_probs=keep_probs,
        decay_epochs=decay_epochs,
        mini_batch=False,
        train_dir='output',
        log_dir='log',
        model_name=top_model_name)
    top_model.train()
    weights = top_model.sess.run(top_model.weights)
    orig_weight_path = 'output/inception_weights_%s.npy' % top_model_name
    np.save(orig_weight_path, weights)

with full_graph.as_default():
    full_model.load_weights_from_disk(orig_weight_path,
                                      do_save=False,
                                      do_check=True)
    full_model.reset_datasets()

### Create poisoned dataset
print('Creating poisoned dataset...')

# First pass was with step_size 0.02, 100 iterations, num_to_poison=2
# Second pass with step_size 0.01 and 200 iterations, num_to_poison=3
Example #3
0
tf_model = BinaryLogisticRegressionWithLBFGS(
    input_dim=input_dim,
    weight_decay=weight_decay,
    max_lbfgs_iter=max_lbfgs_iter,
    num_classes=num_classes,
    batch_size=batch_size,
    data_sets=data_sets,
    initial_learning_rate=initial_learning_rate,
    keep_probs=keep_probs,
    decay_epochs=decay_epochs,
    mini_batch=False,
    train_dir='output',
    log_dir='log',
    model_name='spam_logreg_lbfgs')

tf_model.train()

test_idx = 8
actual_loss_diffs, predicted_loss_diffs_cg, indices_to_remove = experiments.test_retraining(
    tf_model,
    test_idx,
    iter_to_load=0,
    force_refresh=False,
    num_to_remove=500,
    remove_type='maxinf',
    random_seed=0)

# LiSSA
np.random.seed(17)
predicted_loss_diffs_lissa = tf_model.get_influence_on_test_loss(
    [test_idx],
def run_spam(ex_to_leave_out=None, num_examples=None):
    """
    If ex_to_leave_out is None, don't leave any out. Otherwise, leave out the example at the specified index.
    If num_examples is None, use all the examples
    """
    data_sets = load_spam(ex_to_leave_out=ex_to_leave_out,
                          num_examples=num_examples)
    # "Spam" and "Ham"
    num_classes = 2

    input_dim = data_sets.train.x.shape[1]
    weight_decay = 0.0001
    # weight_decay = 1000 / len(lr_data_sets.train.labels)
    batch_size = 100
    initial_learning_rate = 0.001
    keep_probs = None
    decay_epochs = [1000, 10000]
    max_lbfgs_iter = 1000

    tf.reset_default_graph()

    tf_model = BinaryLogisticRegressionWithLBFGS(
        input_dim=input_dim,
        weight_decay=weight_decay,
        max_lbfgs_iter=max_lbfgs_iter,
        num_classes=num_classes,
        batch_size=batch_size,
        data_sets=data_sets,
        initial_learning_rate=initial_learning_rate,
        keep_probs=keep_probs,
        decay_epochs=decay_epochs,
        mini_batch=False,
        train_dir='output',
        log_dir='log',
        model_name='spam_logreg')

    tf_model.train()

    # NMV 7/26: appears to be unused right now.
    # X_train = np.copy(tf_model.data_sets.train.x)
    # Y_train = np.copy(tf_model.data_sets.train.labels)
    # X_test = np.copy(tf_model.data_sets.test.x)
    # Y_test = np.copy(tf_model.data_sets.test.labels)

    # num_train_examples = Y_train.shape[0]
    # num_flip_vals = 6
    # num_check_vals = 6
    # num_random_seeds = 40

    # dims = (num_flip_vals, num_check_vals, num_random_seeds, 3)
    # fixed_influence_loo_results = np.zeros(dims)
    # fixed_loss_results = np.zeros(dims)
    # fixed_random_results = np.zeros(dims)

    #flipped_results = np.zeros((num_flip_vals, num_random_seeds, 3))

    orig_results = tf_model.sess.run(
        [tf_model.loss_no_reg, tf_model.accuracy_op],
        feed_dict=tf_model.all_test_feed_dict)
    #print('Orig loss: %.5f. Accuracy: %.3f' % (orig_results[0], orig_results[1]))
    result = [tf_model, orig_results]
    return result