Example #1
0
def main(unused_argv):
    # Necessary to use the tfds loader.
    tf.enable_v2_behavior()

    if jax.process_count() > 1:
        # TODO(ankugarg): Add support for multihost inference.
        raise NotImplementedError(
            'BLEU eval does not support multihost inference.')

    rng = jax.random.PRNGKey(FLAGS.seed)

    mt_eval_config = json.loads(FLAGS.mt_eval_config)

    if FLAGS.experiment_config_filename:
        with tf.io.gfile.GFile(FLAGS.experiment_config_filename) as f:
            experiment_config = json.load(f)
        if jax.process_index() == 0:
            logging.info('experiment_config: %r', experiment_config)
        dataset_name = experiment_config['dataset']
        model_name = experiment_config['model']
    else:
        assert FLAGS.dataset and FLAGS.model
        dataset_name = FLAGS.dataset
        model_name = FLAGS.model

    if jax.process_index() == 0:
        logging.info('argv:\n%s', ' '.join(sys.argv))
        logging.info('device_count: %d', jax.device_count())
        logging.info('num_hosts : %d', jax.host_count())
        logging.info('host_id : %d', jax.host_id())

    model_class = models.get_model(model_name)
    dataset_builder = datasets.get_dataset(dataset_name)
    dataset_meta_data = datasets.get_dataset_meta_data(dataset_name)

    hparam_overrides = None
    if FLAGS.hparam_overrides:
        if isinstance(FLAGS.hparam_overrides, str):
            hparam_overrides = json.loads(FLAGS.hparam_overrides)

    merged_hps = hyperparameters.build_hparams(
        model_name=model_name,
        initializer_name=experiment_config['initializer'],
        dataset_name=dataset_name,
        hparam_file=FLAGS.trial_hparams_filename,
        hparam_overrides=hparam_overrides)

    if jax.process_index() == 0:
        logging.info('Merged hps are: %s', json.dumps(merged_hps.to_json()))

    evaluator = bleu_evaluator.BLEUEvaluator(FLAGS.checkpoint_dir, merged_hps,
                                             rng, model_class, dataset_builder,
                                             dataset_meta_data, mt_eval_config)
    evaluator.translate_and_calculate_bleu()
Example #2
0
def main(unused_argv):
  # Necessary to use the tfds imagenet loader.
  tf.enable_v2_behavior()


  rng = jax.random.PRNGKey(FLAGS.seed)

  if FLAGS.hessian_eval_config:
    hessian_eval_config = json.loads(FLAGS.hessian_eval_config)
  else:
    hessian_eval_config = hessian_eval.DEFAULT_EVAL_CONFIG

  if FLAGS.experiment_config_filename:
    with tf.io.gfile.GFile(FLAGS.experiment_config_filename, 'r') as f:
      experiment_config = json.load(f)
    if jax.process_index() == 0:
      logging.info('experiment_config: %r', experiment_config)
    dataset_name = experiment_config['dataset']
    model_name = experiment_config['model']
  else:
    assert FLAGS.dataset and FLAGS.model
    dataset_name = FLAGS.dataset
    model_name = FLAGS.model

  if jax.process_index() == 0:
    logging.info('argv:\n%s', ' '.join(sys.argv))
    logging.info('device_count: %d', jax.device_count())
    logging.info('num_hosts : %d', jax.process_count())
    logging.info('host_id : %d', jax.process_index())

  model = models.get_model(model_name)
  dataset_builder = datasets.get_dataset(dataset_name)
  dataset_meta_data = datasets.get_dataset_meta_data(dataset_name)

  with tf.io.gfile.GFile(FLAGS.trial_hparams_filename, 'r') as f:
    hps = config_dict.ConfigDict(json.load(f))

  if FLAGS.hparam_overrides:
    if isinstance(FLAGS.hparam_overrides, str):
      hparam_overrides = json.loads(FLAGS.hparam_overrides)
    hps.update_from_flattened_dict(hparam_overrides)
  run_lanczos.eval_checkpoints(
      FLAGS.checkpoint_dir,
      hps,
      rng,
      FLAGS.eval_num_batches,
      model,
      dataset_builder,
      dataset_meta_data,
      hessian_eval_config,
      FLAGS.min_global_step,
      FLAGS.max_global_step)
Example #3
0
 def _get_dataset(self, hps, rng):
     """Sets ups dataset builders."""
     hparams_dict = hps.to_dict()
     hparams_dict.update(self.callback_config)
     hparams = config_dict.ConfigDict(hparams_dict)
     dataset_builder = datasets.get_dataset(
         self.callback_config['dataset_name'])
     dataset = dataset_builder(
         rng,
         hparams.batch_size,
         eval_batch_size=self.callback_config['eval_batch_size'],
         hps=hparams)
     return dataset
Example #4
0
def main(unused_argv):
    if jax.process_index() == 0:
        logging.info('argv:\n%s', ' '.join(sys.argv))
        logging.info('device_count: %d', jax.device_count())
        logging.info('num_hosts : %d', jax.process_count())
        logging.info('host_id : %d', jax.process_index())

        if FLAGS.batch_size is None or FLAGS.batch_size <= 0:
            raise ValueError("""FLAGS.batch_size value is invalid,
          expected a positive non-zero integer.""")

        if FLAGS.dataset is None:
            raise ValueError("""FLAGS.dataset value is invalid,
          expected a non-empty string describing dataset name.""")

        batch_size = FLAGS.batch_size
        num_batches = FLAGS.num_batches
        dataset_name = FLAGS.dataset
        model_name = FLAGS.model
        initializer_name = 'noop'

        hparam_overrides = {
            'batch_size': batch_size,
        }

        hps = hyperparameters.build_hparams(model_name=model_name,
                                            initializer_name=initializer_name,
                                            dataset_name=dataset_name,
                                            hparam_file=None,
                                            hparam_overrides=hparam_overrides)

        rng = jax.random.PRNGKey(0)
        rng, data_rng = jax.random.split(rng)

        dataset = datasets.get_dataset(FLAGS.dataset)(data_rng, batch_size,
                                                      batch_size, hps)
        train_iter = dataset.train_iterator_fn()

        for i in range(num_batches):
            batch = next(train_iter)
            logging.info('train batch_num = %d, batch = %r', i, batch)

        for batch in dataset.valid_epoch(num_batches):
            logging.info('validation batch = %r', batch)
Example #5
0
def _get_dataset(shuffle_seed, additional_hps=None):
  """Loads the ogbg-molpcba dataset using mock data."""
  with tfds.testing.mock_data(as_dataset_fn=_as_dataset):
    ds = 'ogbg_molpcba'
    dataset_builder = get_dataset(ds)
    hps_dict = get_dataset_hparams(ds).to_dict()
    if additional_hps is not None:
      hps_dict.update(additional_hps)
    hps = config_dict.ConfigDict(hps_dict)
    hps.train_size = 4
    hps.valid_size = 4
    hps.test_size = 4
    hps.max_nodes_multiplier = NODES_SIZE_MULTIPLIER
    hps.max_edges_multiplier = EDGES_SIZE_MULTIPLIER
    batch_size = BATCH_SIZE
    eval_batch_size = BATCH_SIZE
    dataset = dataset_builder(
        shuffle_rng=shuffle_seed,
        batch_size=batch_size,
        eval_batch_size=eval_batch_size,
        hps=hps)
    return dataset
Example #6
0
def _run(train_fn, dataset_name, eval_batch_size, eval_num_batches,
         eval_train_num_batches, eval_frequency, checkpoint_steps,
         num_tf_data_prefetches, num_device_prefetches,
         num_tf_data_map_parallel_calls, early_stopping_target_name,
         early_stopping_target_value, early_stopping_mode, eval_steps,
         hparam_file, hparam_overrides, initializer_name, model_name,
         loss_name, metrics_name, num_train_steps, experiment_dir, worker_id,
         training_metrics_config, callback_configs, external_checkpoint_path):
    """Function that runs a Jax experiment. See flag definitions for args."""
    model_cls = models.get_model(model_name)
    initializer = initializers.get_initializer(initializer_name)
    dataset_builder = datasets.get_dataset(dataset_name)
    dataset_meta_data = datasets.get_dataset_meta_data(dataset_name)
    input_pipeline_hps = config_dict.ConfigDict(
        dict(
            num_tf_data_prefetches=num_tf_data_prefetches,
            num_device_prefetches=num_device_prefetches,
            num_tf_data_map_parallel_calls=num_tf_data_map_parallel_calls,
        ))

    merged_hps = hyperparameters.build_hparams(
        model_name=model_name,
        initializer_name=initializer_name,
        dataset_name=dataset_name,
        hparam_file=hparam_file,
        hparam_overrides=hparam_overrides,
        input_pipeline_hps=input_pipeline_hps)

    # Note that one should never tune an RNG seed!!! The seed is only included in
    # the hparams for convenience of running hparam trials with multiple seeds per
    # point.
    rng_seed = merged_hps.rng_seed
    if merged_hps.rng_seed < 0:
        rng_seed = _create_synchronized_rng_seed()
    xm_experiment = None
    xm_work_unit = None
    if jax.process_index() == 0:
        logging.info('Running with seed %d', rng_seed)
    rng = jax.random.PRNGKey(rng_seed)

    # Build the loss_fn, metrics_bundle, and flax_module.
    model = model_cls(merged_hps, dataset_meta_data, loss_name, metrics_name)
    trial_dir = os.path.join(experiment_dir, str(worker_id))
    meta_data_path = os.path.join(trial_dir, 'meta_data.json')
    meta_data = {'worker_id': worker_id, 'status': 'incomplete'}
    if jax.process_index() == 0:
        logging.info('rng: %s', rng)
        gfile.makedirs(trial_dir)
        # Set up the metric loggers for host 0.
        metrics_logger, init_logger = utils.set_up_loggers(
            trial_dir, xm_work_unit)
        hparams_fname = os.path.join(trial_dir, 'hparams.json')
        logging.info('saving hparams to %s', hparams_fname)
        with gfile.GFile(hparams_fname, 'w') as f:
            f.write(merged_hps.to_json())
        _write_trial_meta_data(meta_data_path, meta_data)
    else:
        metrics_logger = None
        init_logger = None
    try:
        epoch_reports = list(
            train_fn(trial_dir,
                     model,
                     dataset_builder,
                     initializer,
                     num_train_steps,
                     merged_hps,
                     rng,
                     eval_batch_size,
                     eval_num_batches,
                     eval_train_num_batches,
                     eval_frequency,
                     checkpoint_steps,
                     early_stopping_target_name,
                     early_stopping_target_value,
                     early_stopping_mode,
                     eval_steps,
                     metrics_logger,
                     init_logger,
                     training_metrics_config=training_metrics_config,
                     callback_configs=callback_configs,
                     external_checkpoint_path=external_checkpoint_path))
        logging.info(epoch_reports)
        meta_data['status'] = 'done'
    except utils.TrainingDivergedError as err:
        meta_data['status'] = 'diverged'
        raise err
    finally:
        if jax.process_index() == 0:
            _write_trial_meta_data(meta_data_path, meta_data)
Example #7
0
    def test_determinism(self, ds):
        """Test that shuffle_rng and epoch correctly determine the order of data."""
        batch_size = 32
        eval_batch_size = 16
        np.random.seed(0)  # set the seed so the mock data is deterministic.

        # This will override the tfds.load(mnist) call to return 100 fake samples.
        with tfds.testing.mock_data(num_examples=128):
            dataset_builder = get_dataset(ds)
            hps = get_dataset_hparams(ds)
            hps.train_size = 80
            hps.valid_size = 48
            hps.test_size = 40
            dataset = dataset_builder(shuffle_rng=jax.random.PRNGKey(0),
                                      batch_size=batch_size,
                                      eval_batch_size=eval_batch_size,
                                      hps=hps)
            dataset_copy = dataset_builder(shuffle_rng=jax.random.PRNGKey(0),
                                           batch_size=batch_size,
                                           eval_batch_size=eval_batch_size,
                                           hps=hps)
        batch_idx_to_test = 1

        saved_batch = next(
            itertools.islice(dataset.train_iterator_fn(), batch_idx_to_test,
                             batch_idx_to_test + 1))
        saved_batch_same_epoch = next(
            itertools.islice(dataset_copy.train_iterator_fn(),
                             batch_idx_to_test, batch_idx_to_test + 1))
        saved_batch_diff_epoch = next(
            itertools.islice(dataset.train_iterator_fn(),
                             batch_idx_to_test + 3, batch_idx_to_test + 4))

        saved_batch_eval = next(
            itertools.islice(dataset.valid_epoch(), batch_idx_to_test,
                             batch_idx_to_test + 1))
        saved_batch_eval_same_epoch = next(
            itertools.islice(dataset_copy.valid_epoch(), batch_idx_to_test,
                             batch_idx_to_test + 1))

        self.assertTrue(
            jnp.array_equal(saved_batch['inputs'],
                            saved_batch_same_epoch['inputs']))
        self.assertTrue(
            jnp.array_equal(saved_batch['targets'],
                            saved_batch_same_epoch['targets']))
        self.assertFalse(
            jnp.array_equal(saved_batch['inputs'],
                            saved_batch_diff_epoch['inputs']))
        self.assertFalse(
            jnp.array_equal(saved_batch['targets'],
                            saved_batch_diff_epoch['targets']))
        self.assertTrue(
            jnp.array_equal(saved_batch_eval['inputs'],
                            saved_batch_eval_same_epoch['inputs']))

        # Check shapes
        expected_shape = jnp.array([
            batch_size, hps.input_shape[0], hps.input_shape[1],
            hps.input_shape[2]
        ])
        expected_shape_eval = jnp.array([
            eval_batch_size,
            hps.input_shape[0],
            hps.input_shape[1],
            hps.input_shape[2],
        ])
        self.assertTrue(
            jnp.array_equal(saved_batch['inputs'].shape, expected_shape))
        self.assertTrue(
            jnp.array_equal(saved_batch_eval['inputs'].shape,
                            expected_shape_eval))

        expected_target_shape = jnp.array(
            [batch_size,
             get_dataset_hparams(ds)['output_shape'][-1]])
        self.assertTrue(
            jnp.array_equal(saved_batch['targets'].shape,
                            expected_target_shape))

        # Check that the training gen drops the last partial batch.
        drop_partial_batches = list(
            itertools.islice(dataset.train_iterator_fn(), 0, 2))

        # Check that the validation set correctly pads the final partial batch.
        no_drop_partial_batches = list(dataset.test_epoch(num_batches=3))
        self.assertLen(drop_partial_batches, 2)
        self.assertLen(no_drop_partial_batches, 3)
        expected_shape = jnp.array([
            80 % batch_size,
            hps.input_shape[0],
            hps.input_shape[1],
            hps.input_shape[2],
        ])
        self.assertTrue(
            jnp.array_equal(no_drop_partial_batches[2]['inputs'].shape,
                            expected_shape))

        # We expect the partial batch to have 40 % 16 = 8 non padded inputs.
        self.assertEqual(no_drop_partial_batches[2]['weights'].sum(), 8)

        # Test number of batches
        num_batches = 1
        num_generated = len([
            b for b in itertools.islice(dataset.train_iterator_fn(), 0,
                                        num_batches)
        ])
        self.assertEqual(num_batches, num_generated)
Example #8
0
    def test_early_stopping(self):
        """Test training early stopping on MNIST with a small model."""
        rng = jax.random.PRNGKey(0)

        # Set the numpy seed to make the fake data deterministc. mocking.mock_data
        # ultimately calls numpy.random.
        np.random.seed(0)

        model_name = 'fully_connected'
        loss_name = 'cross_entropy'
        metrics_name = 'classification_metrics'
        initializer_name = 'noop'
        dataset_name = 'mnist'
        model_cls = models.get_model(model_name)
        initializer = initializers.get_initializer(initializer_name)
        dataset_builder = datasets.get_dataset(dataset_name)
        hparam_overrides = {
            'lr_hparams': {
                'base_lr': 0.1,
                'schedule': 'cosine'
            },
            'batch_size': 8,
            'train_size': 160,
            'valid_size': 96,
            'test_size': 80,
        }
        input_pipeline_hps = config_dict.ConfigDict(
            dict(
                num_tf_data_prefetches=-1,
                num_device_prefetches=0,
                num_tf_data_map_parallel_calls=-1,
            ))
        hps = hyperparameters.build_hparams(
            model_name,
            initializer_name,
            dataset_name,
            hparam_file=None,
            hparam_overrides=hparam_overrides,
            input_pipeline_hps=input_pipeline_hps)

        eval_batch_size = 16
        num_examples = 256

        def as_dataset(self, *args, **kwargs):
            del args
            del kwargs

            # pylint: disable=g-long-lambda,g-complex-comprehension
            return tf.data.Dataset.from_generator(
                lambda: ({
                    'image': np.ones(shape=(28, 28, 1), dtype=np.uint8),
                    'label': 9,
                } for i in range(num_examples)),
                output_types=self.info.features.dtype,
                output_shapes=self.info.features.shape,
            )

        # This will override the tfds.load(mnist) call to return 100 fake samples.
        with tfds.testing.mock_data(as_dataset_fn=as_dataset,
                                    num_examples=num_examples):
            dataset = dataset_builder(shuffle_rng=jax.random.PRNGKey(0),
                                      batch_size=hps.batch_size,
                                      eval_batch_size=eval_batch_size,
                                      hps=hps)

        model = model_cls(hps, datasets.get_dataset_meta_data(dataset_name),
                          loss_name, metrics_name)

        num_train_steps = 40
        early_stopping_target_name = 'test/ce_loss'
        early_stopping_target_value = 0.005
        early_stopping_mode = 'less'
        eval_num_batches = 5
        eval_every = 10
        checkpoint_steps = [1, 3, 15]
        metrics_logger, init_logger = utils.set_up_loggers(self.test_dir)
        epoch_reports = list(
            trainer.train(
                train_dir=self.test_dir,
                model=model,
                dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
                initializer=initializer,
                num_train_steps=num_train_steps,
                hps=hps,
                rng=rng,
                eval_batch_size=eval_batch_size,
                eval_num_batches=eval_num_batches,
                eval_train_num_batches=eval_num_batches,
                eval_frequency=eval_every,
                checkpoint_steps=checkpoint_steps,
                early_stopping_target_name=early_stopping_target_name,
                early_stopping_target_value=early_stopping_target_value,
                early_stopping_mode=early_stopping_mode,
                metrics_logger=metrics_logger,
                init_logger=init_logger))
        self.assertLen(epoch_reports, 3)
        self.assertGreater(epoch_reports[-2][early_stopping_target_name],
                           early_stopping_target_value)
        self.assertLess(epoch_reports[-1][early_stopping_target_name],
                        early_stopping_target_value)
Example #9
0
    def test_trainer(self):
        """Test training for two epochs on MNIST with a small model."""
        rng = jax.random.PRNGKey(0)

        # Set the numpy seed to make the fake data deterministc. mocking.mock_data
        # ultimately calls numpy.random.
        np.random.seed(0)

        model_name = 'fully_connected'
        loss_name = 'cross_entropy'
        metrics_name = 'classification_metrics'
        initializer_name = 'noop'
        dataset_name = 'mnist'
        model_cls = models.get_model(model_name)
        initializer = initializers.get_initializer(initializer_name)
        dataset_builder = datasets.get_dataset(dataset_name)
        hparam_overrides = {
            'lr_hparams': {
                'base_lr': 0.1,
                'schedule': 'cosine'
            },
            'batch_size': 8,
            'train_size': 160,
            'valid_size': 96,
            'test_size': 80,
        }
        input_pipeline_hps = config_dict.ConfigDict(
            dict(
                num_tf_data_prefetches=-1,
                num_device_prefetches=0,
                num_tf_data_map_parallel_calls=-1,
            ))
        hps = hyperparameters.build_hparams(
            model_name,
            initializer_name,
            dataset_name,
            hparam_file=None,
            hparam_overrides=hparam_overrides,
            input_pipeline_hps=input_pipeline_hps)

        eval_batch_size = 16
        num_examples = 256

        def as_dataset(self, *args, **kwargs):
            del args
            del kwargs

            # pylint: disable=g-long-lambda,g-complex-comprehension
            return tf.data.Dataset.from_generator(
                lambda: ({
                    'image': np.ones(shape=(28, 28, 1), dtype=np.uint8),
                    'label': 9,
                } for i in range(num_examples)),
                output_types=self.info.features.dtype,
                output_shapes=self.info.features.shape,
            )

        # This will override the tfds.load(mnist) call to return 100 fake samples.
        with tfds.testing.mock_data(as_dataset_fn=as_dataset,
                                    num_examples=num_examples):
            dataset = dataset_builder(shuffle_rng=jax.random.PRNGKey(0),
                                      batch_size=hps.batch_size,
                                      eval_batch_size=eval_batch_size,
                                      hps=hps)

        model = model_cls(hps, datasets.get_dataset_meta_data(dataset_name),
                          loss_name, metrics_name)

        num_train_steps = 40
        eval_num_batches = 5
        eval_every = 10
        checkpoint_steps = [1, 3, 15]
        metrics_logger, init_logger = utils.set_up_loggers(self.test_dir)
        epoch_reports = list(
            trainer.train(
                train_dir=self.test_dir,
                model=model,
                dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
                initializer=initializer,
                num_train_steps=num_train_steps,
                hps=hps,
                rng=rng,
                eval_batch_size=eval_batch_size,
                eval_num_batches=eval_num_batches,
                eval_train_num_batches=eval_num_batches,
                eval_frequency=eval_every,
                checkpoint_steps=checkpoint_steps,
                metrics_logger=metrics_logger,
                init_logger=init_logger))

        # check that the additional checkpoints are saved.
        checkpoint_dir = os.path.join(self.test_dir, 'checkpoints')
        saved_steps = []
        for f in tf.io.gfile.listdir(checkpoint_dir):
            if f[:5] == 'ckpt_':
                saved_steps.append(int(f[5:]))

        self.assertEqual(set(saved_steps), set(checkpoint_steps))

        self.assertLen(epoch_reports, num_train_steps / eval_every)
        with tf.io.gfile.GFile(os.path.join(self.test_dir,
                                            'measurements.csv')) as f:
            df = pandas.read_csv(f)
            train_err = df['train/error_rate'].values[-1]
            self.assertEqual(df['preemption_count'].values[-1], 0)
            self.assertLess(train_err, 0.9)

        self.assertEqual(set(df.columns.values), set(get_column_names()))

        model = model_cls(hps, {'apply_one_hot_in_loss': False}, loss_name,
                          metrics_name)

        # Test reload from the checkpoint by increasing num_train_steps.
        num_train_steps_reload = 100
        epoch_reports = list(
            trainer.train(
                train_dir=self.test_dir,
                model=model,
                dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
                initializer=initializer,
                num_train_steps=num_train_steps_reload,
                hps=hps,
                rng=rng,
                eval_batch_size=eval_batch_size,
                eval_num_batches=eval_num_batches,
                eval_train_num_batches=eval_num_batches,
                eval_frequency=eval_every,
                checkpoint_steps=checkpoint_steps,
                metrics_logger=metrics_logger,
                init_logger=init_logger))
        self.assertLen(epoch_reports,
                       (num_train_steps_reload - num_train_steps) / eval_every)
        with tf.io.gfile.GFile(os.path.join(self.test_dir,
                                            'measurements.csv')) as f:
            df = pandas.read_csv(f)
            train_err = df['train/error_rate'].values[-1]
            train_loss = df['train/ce_loss'].values[-1]
            self.assertLess(train_err, 0.35)
            self.assertLess(train_loss, 0.1)

            self.assertEqual(df['valid/num_examples'].values[-1],
                             eval_num_batches * eval_batch_size)
            self.assertEqual(df['preemption_count'].values[-1], 1)
            # Check that the correct learning rate was saved in the measurements file.
            final_learning_rate = df['learning_rate'].values[-1]
            final_step = df['global_step'].values[-1]
            self.assertEqual(num_train_steps_reload, final_step)

            # final_step will be one larger than the last step used to calculate the
            # lr_decay, hense we plug in (final_step - 1) to the decay formula.
            # Note that there is a small numerical different here with np vs jnp.
            decay_factor = (1 + np.cos(
                (final_step - 1) / num_train_steps_reload * np.pi)) * 0.5
            self.assertEqual(float(final_learning_rate),
                             hps.lr_hparams['base_lr'] * decay_factor)

        self.assertEqual(set(df.columns.values), set(get_column_names()))
Example #10
0
  def test_run_lanczos(self):
    """Test training for two epochs on MNIST with a small model."""
    rng = jax.random.PRNGKey(0)

    # Set the numpy seed to make the fake data deterministc. mocking.mock_data
    # ultimately calls numpy.random.
    np.random.seed(0)

    model_name = 'fully_connected'
    loss_name = 'cross_entropy'
    metrics_name = 'classification_metrics'
    initializer_name = 'noop'
    dataset_name = 'mnist'
    model_cls = models.get_model(model_name)
    initializer = initializers.get_initializer(initializer_name)
    dataset_builder = datasets.get_dataset(dataset_name)
    hparam_overrides = {
        'lr_hparams': {
            'base_lr': 0.1,
            'schedule': 'cosine'
        },
        'batch_size': 8,
        'train_size': 160,
        'valid_size': 96,
        'test_size': 80,
    }
    input_pipeline_hps = config_dict.ConfigDict(dict(
        num_tf_data_prefetches=-1,
        num_device_prefetches=0,
        num_tf_data_map_parallel_calls=-1,
    ))
    hps = hyperparameters.build_hparams(
        model_name,
        initializer_name,
        dataset_name,
        hparam_file=None,
        hparam_overrides=hparam_overrides,
        input_pipeline_hps=input_pipeline_hps)
    model = model_cls(hps, datasets.get_dataset_meta_data(dataset_name),
                      loss_name, metrics_name)

    eval_batch_size = 16
    num_examples = 256

    def as_dataset(self, *args, **kwargs):
      del args
      del kwargs

      # pylint: disable=g-long-lambda,g-complex-comprehension
      return tf.data.Dataset.from_generator(
          lambda: ({
              'image': np.ones(shape=(28, 28, 1), dtype=np.uint8),
              'label': 9,
          } for i in range(num_examples)),
          output_types=self.info.features.dtype,
          output_shapes=self.info.features.shape,
      )

    # This will override the tfds.load(mnist) call to return 100 fake samples.
    with tfds.testing.mock_data(
        as_dataset_fn=as_dataset, num_examples=num_examples):
      dataset = dataset_builder(
          shuffle_rng=jax.random.PRNGKey(0),
          batch_size=hps.batch_size,
          eval_batch_size=eval_batch_size,
          hps=hps)

    num_train_steps = 41
    eval_num_batches = 5
    eval_every = 10
    checkpoint_steps = [10, 30, 40]
    metrics_logger, init_logger = None, None
    _ = list(
        trainer.train(
            train_dir=self.test_dir,
            model=model,
            dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
            initializer=initializer,
            num_train_steps=num_train_steps,
            hps=hps,
            rng=rng,
            eval_batch_size=eval_batch_size,
            eval_num_batches=eval_num_batches,
            eval_train_num_batches=eval_num_batches,
            eval_frequency=eval_every,
            checkpoint_steps=checkpoint_steps,
            metrics_logger=metrics_logger,
            init_logger=init_logger))

    checkpoint_dir = os.path.join(self.test_dir, 'checkpoints')
    rng = jax.random.PRNGKey(0)

    run_lanczos.eval_checkpoints(
        checkpoint_dir,
        hps,
        rng,
        eval_num_batches,
        model_cls=model_cls,
        dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
        dataset_meta_data=datasets.get_dataset_meta_data(dataset_name),
        hessian_eval_config=hessian_eval.DEFAULT_EVAL_CONFIG,
    )

    # Load the saved file.
    hessian_dir = os.path.join(checkpoint_dir, 'hessian', 'training_metrics')
    pytree_list = checkpoint.load_pytree(hessian_dir)

    # Convert to a regular list (checkpointer will have converted the saved
    # list to a dict of keys '0', '1', ...
    pytree_list = [pytree_list[str(i)] for i in range(len(pytree_list))]
    # Test that the logged steps are correct.
    saved_steps = [row['step'] for row in pytree_list]
    self.assertEqual(saved_steps, checkpoint_steps)
    def test_accumulation(self):
        """Test simple gradient accumulation."""
        num_steps = 3
        per_step_batch_size = 16
        total_batch_size = 48
        virtual_batch_size = 8
        model_str = 'wide_resnet'  # Pick a model with batch norm.
        model_cls = models.get_model(model_str)
        model_hps = models.get_model_hparams(model_str)
        dataset_name = 'cifar10'
        dataset_builder = datasets.get_dataset(dataset_name)
        hps = copy.copy(model_hps)
        hps.update(datasets.get_dataset_hparams(dataset_name))

        # Compute updates using gradient accumulation.
        hps.update({
            'batch_size': per_step_batch_size,
            'virtual_batch_size': virtual_batch_size,
            'normalizer': 'virtual_batch_norm',
            'total_accumulated_batch_size': total_batch_size,
        })
        grad_acc_params, grad_acc_batch_stats, grad_acc_training_cost = _init_model(
            model_cls, hps)
        total_dataset = dataset_builder(shuffle_rng=jax.random.PRNGKey(1),
                                        batch_size=total_batch_size,
                                        eval_batch_size=10,
                                        hps=hps)
        # Ensure we see the same exact batches.
        train_iter = total_dataset.train_iterator_fn()
        train_iter = itertools.islice(train_iter, 0, num_steps)
        train_iter = itertools.cycle(train_iter)

        def grad_acc_train_iter():
            for _ in range(num_steps):
                total_batch = next(train_iter)
                # Split each total batch into sub batches.
                num_sub_batches = total_batch_size // per_step_batch_size
                start_index = 0
                end_index = int(total_batch_size / num_sub_batches)
                for bi in range(num_sub_batches):
                    yield jax.tree_map(lambda x: x[start_index:end_index],
                                       total_batch)  # pylint: disable=cell-var-from-loop
                    start_index = end_index
                    end_index = int(total_batch_size * (bi + 2) /
                                    num_sub_batches)

        lrs = jnp.array([1.0, 0.1, 1e-2])
        sgd_opt_init, sgd_opt_update = optax.sgd(
            learning_rate=lambda t: lrs.at[t].get())
        opt_init, opt_update = gradient_accumulator.accumulate_gradients(
            per_step_batch_size=per_step_batch_size,
            total_batch_size=total_batch_size,
            virtual_batch_size=virtual_batch_size,
            base_opt_init_fn=sgd_opt_init,
            base_opt_update_fn=sgd_opt_update)
        grad_acc_params, grad_acc_batch_stats = _optimize(
            # Run for 3x the number of steps to see the same number of examples.
            num_steps=3 * num_steps,
            params=grad_acc_params,
            batch_stats=grad_acc_batch_stats,
            training_cost=grad_acc_training_cost,
            train_iter=grad_acc_train_iter(),
            opt_init=opt_init,
            opt_update=opt_update)

        # Compute the same updates, but without gradient accumulation.
        hps.update({
            'batch_size': total_batch_size,
            'total_accumulated_batch_size': None,
        })
        params, batch_stats, training_cost = _init_model(model_cls, hps)
        params, batch_stats = _optimize(num_steps=num_steps,
                                        params=params,
                                        batch_stats=batch_stats,
                                        training_cost=training_cost,
                                        train_iter=train_iter,
                                        opt_init=sgd_opt_init,
                                        opt_update=sgd_opt_update)

        diffs_params = jax.tree_multimap(lambda a, b: jnp.mean(jnp.abs(a - b)),
                                         grad_acc_params, params)

        def batch_stats_reduce(a, b):
            if len(a.shape) > 0:  # pylint: disable=g-explicit-length-test
                return jnp.mean(
                    jnp.abs(jnp.mean(a, axis=0) - jnp.mean(b, axis=0)))
            # The gradient accumulator counters are scalars.
            return a - b

        diffs_batch_stats = jax.tree_multimap(batch_stats_reduce,
                                              grad_acc_batch_stats,
                                              batch_stats)
        # We sometimes get small floating point errors in the gradients, so we
        # cannot test for the values being exactly the same.
        acceptable_params_diff = 1e-4
        acceptable_batch_stats_diff = 5e-3

        def check_closeness(root_name, d, max_diff):
            not_close_dict = {}
            for name, dd in d.items():
                new_name = root_name + '/' + name if root_name else name
                if isinstance(dd, (dict, core.FrozenDict)):
                    not_close_dict.update(
                        check_closeness(new_name, dd, max_diff))
                else:
                    if dd > max_diff:
                        not_close_dict[new_name] = dd
            return not_close_dict

        not_close_params = check_closeness('', diffs_params,
                                           acceptable_params_diff)
        self.assertEmpty(not_close_params)
        not_close_batch_stats = check_closeness('', diffs_batch_stats,
                                                acceptable_batch_stats_diff)
        # Note that for the variance variables in the batch stats collection, they
        # sometimes can start to diverge slightly over time (with a higher number of
        # training steps), likely due to numerical issues.
        self.assertEmpty(not_close_batch_stats)
Example #12
0
  def test_shampoo_wrn(self):
    """Test distributed shampoo on fake dataset."""
    model_name = 'simple_cnn'
    model_cls = models.get_model(model_name)
    hparam_overrides = {
        'optimizer': 'distributed_shampoo',
        'batch_size': 1,
        'train_size': 10,
        'valid_size': 10,
        'input_shape': (32, 32, 3),
        'output_shape': (10,),
        'opt_hparams': {
            'block_size': 32,
            'beta1': 0.9,
            'beta2': 0.999,
            'diagonal_epsilon': 1e-10,
            'matrix_epsilon': 1e-6,
            'weight_decay': 0.0,
            'start_preconditioning_step': 5,
            'preconditioning_compute_steps': 1,
            'statistics_compute_steps': 1,
            'best_effort_shape_interpretation': True,
            'graft_type': distributed_shampoo.GraftingType.SGD,
            'nesterov': True,
            'exponent_override': 0,
            'batch_axis_name': 'batch',
            'num_devices_for_pjit': None,
            'shard_optimizer_states': False,
            'inverse_failure_threshold': 0.1,
            'clip_by_scaled_gradient_norm': None,
            'precision': lax.Precision.HIGHEST,
            'moving_average_for_momentum': False,
            'skip_preconditioning_dim_size_gt': 4096,
            'best_effort_memory_usage_reduction': False,
        },
    }
    input_pipeline_hps = config_dict.ConfigDict(dict(
        num_tf_data_prefetches=-1,
        num_device_prefetches=0,
        num_tf_data_map_parallel_calls=-1,
    ))
    hps = hyperparameters.build_hparams(
        model_name,
        initializer_name='noop',
        dataset_name='fake',
        hparam_file=None,
        hparam_overrides=hparam_overrides,
        input_pipeline_hps=input_pipeline_hps)
    initializer = initializers.get_initializer('noop')
    dataset_builder = datasets.get_dataset('fake')
    dataset = dataset_builder(
        shuffle_rng=jax.random.PRNGKey(0),
        batch_size=hps.batch_size,
        eval_batch_size=hps.batch_size,
        hps=hps)

    loss_name = 'cross_entropy'
    metrics_name = 'classification_metrics'
    dataset_meta_data = datasets.get_dataset_meta_data('fake')
    model = model_cls(hps, dataset_meta_data, loss_name, metrics_name)

    metrics_logger, init_logger = utils.set_up_loggers(self.test_dir)
    _ = list(
        trainer.train(
            train_dir=self.test_dir,
            model=model,
            dataset_builder=lambda *unused_args, **unused_kwargs: dataset,
            initializer=initializer,
            num_train_steps=1,
            hps=hps,
            rng=jax.random.PRNGKey(42),
            eval_batch_size=hps.batch_size,
            eval_num_batches=None,
            eval_train_num_batches=None,
            eval_frequency=10,
            checkpoint_steps=[],
            metrics_logger=metrics_logger,
            init_logger=init_logger))

    with tf.io.gfile.GFile(os.path.join(self.test_dir,
                                        'measurements.csv')) as f:
      df = pandas.read_csv(f)
      valid_ce_loss = df['valid/ce_loss'].values[-1]
      self.assertLess(valid_ce_loss, 1e-3)