Example #1
0
# @File : main.py
import argparse

from init_logger import get_logger
from config import ConfigDnCNN as cfg
from model.dncnn_model import DnCNN_Model
import os

parser = argparse.ArgumentParser(description='')
parser.add_argument('--gpu', dest='gpu', type=int, default=-1, help='gpu flag, 1, 0 for GPU ID and -1 for CPU',
                    choices=(0, 1, -1))
parser.add_argument('--mode', dest='mode', type=str, default='train', help='mode for train val or test or predict',
                    choices=('train', 'predict', 'test'))

args = parser.parse_args()

if __name__ == '__main__':
    logger = get_logger('log/', 'dncnn.log', 'dncnn train')
    config = cfg(logger, args.gpu)
    is_training = args.mode == 'train'
    model = DnCNN_Model(config, is_training, channel=config.channel)
    if is_training:
        model.build_train_val()
        model.train()
    else:
        model.build_inference()
    if args.mode == 'predict':
        files = [os.path.abspath('dataset/test/' + file) for file in os.listdir('dataset/test/') if
                 file.endswith('png')]
        model.predicts(files, 'dataset/out/')
Example #2
0
                        type=int,
                        help=('Whether use gpu or not'))

    parameters = parser.parse_args()

    _dataset_type = parameters.data_type
    _gpu = parameters.gpu
    _Configure = cfg.ConfigSeq2Seq(_dataset_type, _gpu)
    # save the configure as the yaml format
    # Get configures for the project
    _config = _Configure._configs

    # pprint the configure
    # Generate the logger
    logger = init_logger.get_logger(_loggerDir='./static',
                                    log_path='server.log',
                                    logger_name='server')
    logger.info('Server is working ...')
    # Generate the vocab
    _vocab = cfg.VocabSeq2Seq(_config, logger)

    Moedl = LoadModel(ConfClass=_Configure,
                      _config=_config,
                      _vocab=_vocab,
                      logger=logger,
                      trainable=False)

    print('Load models done ... ...')

    app.run(host='0.0.0.0', port=9999, debug=True)
Example #3
0
def im2katex(parameters):
    _dataset_type = parameters.data_type
    _gpu = parameters.gpu
    _encoder_type = parameters.encoder_type
    _Configure = cfg.ConfigSeq2Seq(_dataset_type, _gpu, _encoder_type)
    # save the configure as the yaml format
    _Configure.save_cfg()
    # Get configures for the project
    _config = _Configure._configs
    # pprint the configure
    pprint(_config)
    logger = init_logger.get_logger(
        _loggerDir=_config.model.log_dir, log_path=_config.model.log_file_name,
        logger_name=_config.model.log_name)

    logger.info('Logging is working ...')
    # Generate the vocab
    _vocab = cfg.VocabSeq2Seq(_config, logger)

    if parameters.mode == 'trainval':
        logger.info('This is an trainval mode')
        _TrainDataLoader = DataIteratorSeq2SeqAtt(_config, logger, ['train'])
        _ValDataLoader = DataIteratorSeq2SeqAtt(_config, logger, ['validate'])
        Model = Seq2SeqAttModel(config=_config, vocab=_vocab, logger=logger,
                                trainable=True)
        Model.build_traineval()
        Model.trainval(_TrainDataLoader, _ValDataLoader)

    elif parameters.mode == 'val':
        """ Validate the dataset """
        logger.info('This is an validate mode')
        # _ValDataLoader = DataIteratorSeq2SeqAtt(_config, logger, ['train', 'validate', 'test'])
        _ValDataLoader = DataIteratorSeq2SeqAtt(_config, logger, ['validate'])
        Model = Seq2SeqAttModel(config=_config, vocab=_vocab, logger=logger,
                                trainable=False)
        Model.build_traineval()
        scores = Model.evaluate(_ValDataLoader)
        print('evaluation score is:', scores)

    elif parameters.mode == 'test':
        """ run the test dataset """
        logger.info('This is an test model')
        _TestDataLoader = DataIteratorSeq2SeqAtt(_config, logger, ['test'])

        Model = Seq2SeqAttModel(config=_config, vocab=_vocab, logger=logger, trainable=False)
        Model.build_inference()
        _, predict_npy, _ = Model.test(_TestDataLoader)

        np.save('./temp/predict/predict_out', predict_npy)
    else:
        logger.info(
            'This is an predict model, you can predict a sigle image predict files under a given directory')
        temp_path = os.path.abspath(_config.predict.temp_path)
        npy_path = os.path.abspath(_config.predict.npy_path)
        preprocess_dir = os.path.abspath(_config.predict.preprocess_dir)
        render_path = os.path.abspath(_config.predict.render_path)
        webpath = os.path.abspath(_config.predict.web_path)

        _Configure.create_dir(
            [temp_path, npy_path, preprocess_dir, render_path, webpath])

        webpage = cfg.s(webpath, title='Predict_Image_Display')
        target_height = _vocab.target_height
        bucket_size = _vocab.bucket_size
        Model = Seq2SeqAttModel(config=_config, vocab=_vocab, logger=logger, trainable=False)
        Model.build_inference()
        _ = Model.restore_session()

        while True:
            """ Load the model and restore the weights """

            """ if there is no predict_image given, then input the image_path"""
            if parameters.predict_image:
                image_path = parameters.predict_image
            else:
                # python3
                image_path = input("Input file or directory want to be predict ... >")
                # delete the whitespace
                image_path = simplify(text=image_path)
                if image_path.lower() == 'exit':
                    break
            if os.path.isdir(image_path):
                image_list = get_img_list(image_path)
                logger.info('Total image num want to predict {}'.format(len(image_list)))
            elif os.path.isfile(image_path):
                root, name = os.path.split(image_path)
                image_list = [name]
                image_path = root
            else:
                logger.warn('Please check the input image path')
                continue

            if not image_list:
                logger.warn('Image list is None')
                continue

            predict_details = list()
            image_nums = len(image_list)
            for idx, img_name in enumerate(image_list):
                if img_name.split('.')[-1] == 'pdf':
                    convert_cmd = "magick convert -density {} -quality {} {} {}".format(
                        200, 100, os.path.join(image_path, img_name), os.path.join(
                            preprocess_dir, "{}.png".format(img_name.split('.')[0])))
                    run(cmd=convert_cmd, timeout_sec=TIMEOUT)
                else:
                    src_dir = os.path.join(image_path, img_name)
                    dst_dir = os.path.join(preprocess_dir, img_name)
                    shutil.copy(src=src_dir, dst=dst_dir)
                # preprocess the image
                _img_name_no_ext = img_name.split('.')[0]
                image_process_flage = image_process(
                    input_dir=preprocess_dir, preprocess_dir=preprocess_dir,
                    render_out=render_path, file_name=img_name, target_height=target_height,
                    bucket_size=bucket_size, _logger=logger)

                if not image_process_flage:
                    continue
                image_data = generate_image_data(os.path.join(
                    preprocess_dir, _img_name_no_ext+'.png'), logger, False)
                # predict the image based image data
                _predict_latex_list = Model.predict_single_img(image_data)
                _LatexWant = _predict_latex_list[0]
                # get the directory for the pwd file
                pwd = os.path.abspath(os.getcwd())
                # switch the directory to the render path
                if render_path not in pwd:
                    os.chdir(render_path)
                render_flag = latex_to_image(_LatexWant, _img_name_no_ext, logger)
                # switch directory to the pwd
                os.chdir(pwd)
                if render_flag:
                    param_croped = (
                        os.path.join(render_path, _img_name_no_ext+'.png'),
                        render_path, _img_name_no_ext+'.png', logger)
                    _ = crop_image(param_croped)
                temp = collections.OrderedDict()
                temp['input_dir'] = os.path.join('preprocess', _img_name_no_ext+'.png')
                temp['predict_latex'] = _LatexWant
                temp['render_dir'] = os.path.join(
                    'render', _img_name_no_ext + '.png') if os.path.exists(
                    os.path.join(render_path, _img_name_no_ext + '.png')) else None
                predict_details.append(temp)

                if idx % 200 == 0 and idx != 0:
                    render_to_html(webpage=webpage, predict_details=predict_details,
                                   npy_path=npy_path, idx=idx, _logger=logger)
                    predict_details = list()

            render_to_html(webpage=webpage, predict_details=predict_details,
                           npy_path=npy_path, idx=idx, _logger=logger)
Example #4
0
                        noisy_mat = noisy_mat.reshape(noisy_shape)
                    # cv2.imshow('ori', ori_mat)
                    # cv2.imshow('noise', noisy_mat)
                    # cv2.waitKey(0)
                    # noisy_mat = generate_for_dncnn_train_data(noisy_mat)
                    # ori_mat = generate_for_dncnn_train_data(ori_mat)
                    batch_noisy.append(noisy_mat)
                    batch_ori.append(ori_mat)
                yield np.asarray(batch_ori), np.asarray(batch_noisy)
            except tf.errors.OutOfRangeError:
                self.logger.info('read tf records out of range!')
                break


if __name__ == '__main__':
    logger = get_logger('./log/', 'generate_data.log', 'generate')
    logger.info('logger start....')
    build_tf_records_file(tf_file_dir='./tf_records/',
                          image_folder=original_image_folder,
                          logger=logger,
                          num_thread=14)
    # for i in range(1, 9):
    #     mat = cv2.imread(os.path.join('noise/', str(i) + '.png'), 0)
    #     mat = cv2.resize(mat, (200, 120), interpolation=cv2.INTER_LANCZOS4)
    #     cv2.imshow('nosie', mat)
    #     mat = mat.reshape((120, 200, 1))
    #     cv2.imshow('reshape', mat)
    #     cv2.waitKey(0)

    # dataset = DataGenerator('../dataset/tfrecords/', 'train', 1, logger)
    # for clean_batch, noisy_batch in dataset.generate():
Example #5
0
        img = greyscale(img)
        hyps = model.predict(img)

        model.logger.info(hyps[0])


if __name__ == "__main__":
    # restore config and model

    parameters = process_args(args)

    _config = config.Config().config
    pprint(_config)

    logger = init_logger.get_logger(_loggerDir=_config.model.model_saved,
                                    log_path=parameters.log_path,
                                    logger_name=parameters.logger_name)
    logger.info('Logging is working ...')

    _vocab = config.Vocab(_config, logger)

    logger.info('Load trainer data done ...')

    Model = Seq2SeqAttModel(config=_config,
                            vocab=_vocab,
                            logger=logger,
                            trainable=False)
    Model.build_inference()
    _ = Model.restore_session()

    interactive_shell(Model)