Example #1
0
 def _correctBadPix(self,badmask):
     for i in np.arange(self.stack.shape[2]):
         plane = self.stack[:,:,i]            
         maskedImage = np.ma.array(plane, mask=badmask.mask)
         NANMask = maskedImage.filled(np.NaN)
         self.stack[:,:,i] = inpaint.replace_nans(NANMask, 5, 0.5, 1, 'idw')          
         
         plane = self.ustack[:,:,i]            
         maskedImage = np.ma.array(plane, mask=badmask.mask)
         NANMask = maskedImage.filled(np.NaN)            
         self.ustack[:,:,i] = inpaint.replace_nans(NANMask, 5, 0.5, 1, 'idw')          
Example #2
0
def inpaint_array(inputArray, mask, **kwargs):
    maskedImg = np.ma.array(inputArray, mask=mask)
    NANMask = maskedImg.filled(np.NaN)
    badArrays, num_badArrays = ndimage.label(mask)
    # data_slices = ndimage.find_objects(badArrays)
    filled = inpaint.replace_nans(NANMask, **kwargs)
    return filled
Example #3
0
    def inpaint(self):
        """ Replace masked-out elements in an array using an iterative image inpainting algorithm. """

        import inpaint
        filled = inpaint.replace_nans(
            np.ma.filled(self.raster_data, np.NAN).astype(np.float32), 3, 0.01,
            2)
        self.raster_data = np.ma.masked_invalid(filled)
  def callInpaint(img, mask, outputFilename, i):
      maskedImg = np.ma.array(img, mask = mask)
      NANMask =  maskedImg.filled(np.NaN)
      filled = inpaint.replace_nans(NANMask)
      #outputFilename = utils.createOutputFilename(sdssFilename, dataDir)
      hdu = pyfits.PrimaryHDU(filled)
      
      if os.path.exists(outputFilename):
	  print outputFilename
	  outputFilename = outputFilename+"B"
	  hdu.writeto(outputFilename)      
      else:
	  hdu.writeto(outputFilename)   
Example #5
0
def inpaint_array(inputArray, mask):
    # maskedImg = np.ma.array(inputArray, mask=mask)
    # NANMask = maskedImg.filled(np.NaN)
    # badArrays, num_badArrays = ndimage.label(mask)
    # data_slices = ndimage.find_objects(badArrays)
    filled = replace_nans(
        inputArray * mask,
        max_iter=20,
        tol=0.05,
        kernel_radius=5,
        kernel_sigma=2,
        method='idw')
    return filled
 def runInpainting(maskFile, listFile, dataDir, ID, log):
   maskFilename = utils.getMask(maskFile, ID)
   sdssFilename = GalaxyParameters.getSDSSUrl(listFile, dataDir, ID)
   outputFilename = utils.createOutputFilename(sdssFilename)
   sdssImage = pyfits.open(sdssFilename)
   imageData = sdssImage[0].data
   imageData = imageData - 1000 #soft bias subtraction, comment out if needed
   head = sdssImage[0].header
   maskFile = pyfits.open(maskFilename)
   mask = maskFile[0].data
   maskedImg = np.ma.array(imageData, mask = mask)
   NANMask =  maskedImg.filled(np.NaN)
   filled = inpaint.replace_nans(NANMask, 15, 0.1, 2, 'idw')
   hdu = pyfits.PrimaryHDU(filled, header = head)
   try:
     hdu.writeto(dataDir+'/filled/'+outputFilename)
   except IOError:
     errmsg = 'file already exists!', dataDir+'/filled/'+outputFilename
     print errmsg
     log.append(errmsg)
   return log
Example #7
0
    def inpaint(self):
        """ Replace masked-out elements in an array using an iterative image inpainting algorithm. """

        import inpaint
        filled = inpaint.replace_nans(np.ma.filled(self.raster_data, np.NAN).astype(np.float32), 3, 0.01, 2)
        self.raster_data = np.ma.masked_invalid(filled)
Example #8
0
def saveDataClearMask(edfimagepath,
                      newpath,
                      stem,
                      first,
                      last,
                      medianename,
                      mask,
                      ndigits=4,
                      extension='edf',
                      doinpaint=False):
    """
	Save new EDF files with the median and mask removed
	
	edfimagepath: Path to the EDF images. The median image is assumed to be in the same directory
	newpath: Path to save the new EDF images.
	stem: Stem for EDF images.
	first: First image number
	last: Last image number
	medianename: Name of median EDF file (in full, with extension)
	mask: mask data
	ndigits: Number of digits for EDF file numbering.
	extension: EDF file extension.
	doinpaint: if set to true, fills diamond mask with inpainting. If not set, diamond mask is filled with median value
	"""
    if ((not (os.path.isdir(newpath))) or (not (os.path.exists(newpath)))):
        print("ERROR! %s is not a directory or does not exist.\nAborting." %
              newpath)
        return
    if (os.path.samefile(edfimagepath, newpath)):
        print(
            "ERROR!\nImages are read from %s.\nNew EDF should be saved in %s.\nThis will destroy the original data.\nAborting"
            % (edfimagepath, newpath))
        return
    print("Reading median image")
    # Read median image
    imagename = os.path.join(edfimagepath, medianename)
    medianeIm = fabio.edfimage.edfimage()
    medianeIm.read(imagename)
    medianeData = medianeIm.getData().astype('float32')

    if (doinpaint):
        print("Filling mask with inpainting")
    else:
        print("Filling mask with median value")

    # Loop on images and test median substraction
    for i in range(first, last + 1):
        # Read image data
        format = "%s%0" + str(ndigits) + "d." + extension
        image = format % (stem, i)
        imagename = os.path.join(edfimagepath, image)
        print("Reading and processing " + imagename)
        im = fabio.edfimage.edfimage()
        im.read(imagename)
        data = im.getData().astype('float32')
        header = im.getHeader()
        # Removing median image
        data = data - medianeData
        # Removing anything below 0
        data = data.clip(min=0)
        meanI = data.mean()
        medianI = numpy.median(data)
        maxI = data.max()
        minI = data.min()
        xsize = im.getDim1()
        ysize = im.getDim2()
        # Preparing mask
        thismask = mask[i - first]
        thismask = thismask.astype(
            numpy.float32
        )  # New versions of python do not like resizing with integer...
        maskscaled = scipy.misc.imresize(thismask, (xsize, ysize),
                                         interp='nearest',
                                         mode='F')
        # Creating data under mask using linear interpolation or inpainting
        # Need to create a list of points for which we have data
        # Actually, gave up, fill with median value!
        idx = (maskscaled > 0)
        if (doinpaint):
            # Creating data under mask using inpainting
            # We rescale the image and inpaint on a smaller version. Before reducing, remove extreme intensity values (it works better)
            datacopy = data.copy()
            datacopy = datacopy.clip(0., 10. * meanI)
            datareduced = scipy.misc.imresize(
                datacopy, (thismask.shape[0], thismask.shape[1]),
                interp='nearest',
                mode='F')
            # Setting mask data as NaN and call for inpainting. Parameters have been set from trial and error
            idx2 = (thismask > 0)
            datareduced[idx2] = numpy.NaN
            result0 = inpaint.replace_nans(datareduced,
                                           max_iter=20,
                                           tol=1.,
                                           kernel_radius=2,
                                           kernel_sigma=5,
                                           method='idw')
            # Rescaling inpainted image and set new values at mask positions
            result0 = scipy.misc.imresize(result0, (xsize, ysize),
                                          interp='nearest',
                                          mode='F')
            data[idx] = result0[idx]
        else:
            # Fill maslwith median value!
            data[idx] = medianI
        # Save new data
        newname = os.path.join(newpath, image)
        print("Saving new EDF with median and mask removed in " + newname)
        im = fabio.edfimage.edfimage()
        im.read(imagename)
        im.setData(data.astype('uint32'))
        im.setHeader(header)
        im.save(newname)
NANMask =  maskedImg.filled(np.NaN)


badArrays, num_badArrays = sp.ndimage.label(mask)
print num_badArrays
data_slices = sp.ndimage.find_objects(badArrays)
#data_slices = np.ma.extras.notmasked_contiguous(maskedImg)
import inpaint

#def replace_nans(array, max_iter, tol,kernel_size=1,method='localmean'):

#data = np.array([[11,22.0,353],[1,np.NaN,343],[11,0,343]])



filled = inpaint.replace_nans(NANMask, 5, 0.5, 2, 'idw')
hdu = pyfits.PrimaryHDU(filled, header = head)
hdu.writeto('IC3376R_masked.fits')
  
#hdu = pyfits.PrimaryHDU(NANMask)
#hdu.writeto('NanMask.fits')

#invdisttree = idw.Invdisttree(maskedImg, maskedImg)
#print data_slices

#for slice in data_slices:
#  dy, dx = slice
#  coords = float(dy.start), float(dy.stop), float(dx.start), float(dx.stop)
#  print 'slice', coords
#  submask = cutoutMask[(dy.start):(dy.stop),(dx.start):(dx.stop)]
#  subarray = cutout[(dy.start):(dy.stop+1),(dx.start):(dx.stop+1)]