mask_names.append(bbox_path) #gt_images.append(image) if i % batch_size == 0: yield (gt_images[(i - batch_size):i], input_images[(i - batch_size):i], file_names[(i - batch_size):i], mask_names[(i - batch_size):i]) #input_images = np.array(input_images) #print('Shape of image: {}'.format(input_images.shape)) if __name__ == "__main__": ng.get_gpus(1) args = parser.parse_args() model = InpaintGCModel() sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: input_image = tf.placeholder(tf.float32, shape=[1, 256, 256, 3]) input_mask = tf.placeholder(tf.float32, shape=[1, 256, 256, 1]) input_guide = tf.placeholder(tf.float32, shape=[1, 256, 256, 1]) output = model.build_server_graph(input_image, input_mask, input_guide) output = (output + 1.) * 127.5 output = tf.reverse(output, [-1]) output = tf.saturate_cast(output, tf.uint8) # load pretrained model vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) assign_ops = []
else: data_mask_data = DataFromFNames(fnames, config.IMG_SHAPES, random_crop=config.RANDOM_CROP) images = data_mask_data.data_pipeline(config.BATCH_SIZE) masks = None # # Mask Data # with open(config.DATA_FLIST[config.MASKDATASET][0]) as f: # fnames = f.read().splitlines() # mask_data = MaskFromFNames( # fnames, config.MASK_SHAPES, random_crop=config.RANDOM_CROP) # masks = mask_data.data_pipeline(config.BATCH_SIZE) guides = None # main model model = InpaintGCModel() g_vars, d_vars, losses = model.build_graph_with_losses(images, masks, guides, config=config) # validation images if config.VAL: with open(config.DATA_FLIST[config.DATASET][1]) as f: val_fnames = f.read().splitlines() with open(config.DATA_FLIST[config.MASKDATASET][1]) as f: val_mask_fnames = f.read().splitlines() # progress monitor by visualizing static images for i in range(config.STATIC_VIEW_SIZE): static_fnames = val_fnames[i:i + 1] if config.MASKFROMFILE: