def test_speed_reading(self):
        if not os.path.exists(self.test_images_write_path + 'normal_steer'):
            os.mkdir(self.test_images_write_path + 'normal_steer')

        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    '1HoursW1-3-6-8')
        # This depends on the number of fused frames. A image could have
        # A certain number of fused frames

        augmenter = Augmenter(None)
        dataset = CoILDataset(full_dataset, transform=augmenter)

        keys = range(
            0,
            len(dataset.measurements[0, :]) - g_conf.NUMBER_IMAGES_SEQUENCE)
        sampler = BatchSequenceSampler(
            splitter.control_steer_split(dataset.measurements,
                                         dataset.meta_data, keys),
            0 * g_conf.BATCH_SIZE, g_conf.BATCH_SIZE,
            g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE)

        # data_loader = torch.utils.data.DataLoader(dataset, batch_size=120,
        #                                          shuffle=True, num_workers=12, pin_memory=True)
        # capture_time = time.time()
        data_loader = torch.utils.data.DataLoader(dataset,
                                                  batch_sampler=sampler,
                                                  shuffle=False,
                                                  num_workers=12,
                                                  pin_memory=True)

        count = 0
        print('len ', len(data_loader))
        max_steer = 0
        for data in data_loader:
            print(count)
            image, labels = data

            count += 1
        print("MAX STEER ", max_steer)
Example #2
0
parser.add_argument('--gradcam_path',
                    type=str,
                    required=True,
                    help='path to save gradcam heatmap')
parser.add_argument('--type',
                    type=str,
                    required=True,
                    help='type of evaluation')

args = parser.parse_args()

merge_with_yaml(args.config)

os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus

augmenter = Augmenter(None)
dataset = CoILDataset(args.dataset_path,
                      transform=augmenter,
                      preload_name=args.preload_name)

dataloader = torch.utils.data.DataLoader(
    dataset,
    batch_size=g_conf.BATCH_SIZE,
    shuffle=False,
    num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
    pin_memory=True)

model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
model = model.cuda()

checkpoint = torch.load(args.checkpoint)
Example #3
0
def execute(gpu, exp_batch, exp_alias, validation_dataset, suppress_output):
    latest = None
    try:
        # We set the visible cuda devices
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        # At this point the log file with the correct naming is created.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     f'{exp_alias}.yaml'))
        # The validation dataset is always fully loaded, so we fix a very high number of hours
        g_conf.NUMBER_OF_HOURS = 10000
        set_type_of_process(process_type='validation',
                            param=validation_dataset)

        # Save the output to a file if so desired
        if suppress_output:
            save_output(exp_alias)

        # Define the dataset. This structure has the __get_item__ redefined in a way
        # that you can access the HDFILES positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    validation_dataset)
        augmenter = Augmenter(None)
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=validation_dataset,
                              process_type='validation')

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.

        # The data loader is the multi threaded module from pytorch that release a number of
        # workers to get all the data.
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=g_conf.BATCH_SIZE,
            shuffle=False,
            num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
            pin_memory=True)

        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION,
                          g_conf.SENSORS).cuda()
        # The window used to keep track of the trainings
        l1_window = []
        latest = get_latest_evaluated_checkpoint()
        if latest is not None:  # When latest is noe
            l1_window = coil_logger.recover_loss_window(
                validation_dataset, None)

        # Keep track of the best loss and the iteration where it happens
        best_loss = 1000
        best_loss_iter = 0

        print(20 * '#')
        print('Starting validation!')
        print(20 * '#')

        # Check if the maximum checkpoint for validating has been reached
        while not maximum_checkpoint_reached(latest):
            # Wait until the next checkpoint is ready (assuming this is run whilst training the model)
            if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):
                # Get next checkpoint for validation according to the test schedule and load it
                latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)
                checkpoint = torch.load(
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 f'{latest}.pth'))
                checkpoint_iteration = checkpoint['iteration']

                model.load_state_dict(checkpoint['state_dict'])
                model.eval()  # Turn off dropout and batchnorm (if any)
                print(f"Validation loaded, checkpoint {checkpoint_iteration}")

                # Main metric will be the used loss for training the network
                criterion = Loss(g_conf.LOSS_FUNCTION)
                checkpoint_average_loss = 0

                # Counter
                iteration_on_checkpoint = 0

                with torch.no_grad():  # save some computation/memory
                    for data in data_loader:
                        # Compute the forward pass on a batch from the validation dataset
                        controls = data['directions'].cuda()
                        img = torch.squeeze(data['rgb']).cuda()
                        speed = dataset.extract_inputs(
                            data).cuda()  # this might not always be speed

                        # For auxiliary metrics
                        output = model.forward_branch(img, speed, controls)

                        # For the loss function
                        branches = model(img, speed)
                        loss_function_params = {
                            'branches': branches,
                            'targets': dataset.extract_targets(data).cuda(),
                            'controls': controls,
                            'inputs': speed,
                            'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                            'variable_weights': g_conf.VARIABLE_WEIGHT
                        }
                        # It could be either waypoints or direct control
                        if 'waypoint1_angle' in g_conf.TARGETS:
                            write_waypoints_output(checkpoint_iteration,
                                                   output)
                        else:
                            write_regular_output(checkpoint_iteration, output)

                        loss, _ = criterion(loss_function_params)
                        loss = loss.data.tolist()

                        # Log a random position
                        position = random.randint(
                            0,
                            len(output.data.tolist()) - 1)

                        coil_logger.add_message(
                            'Iterating', {
                                'Checkpoint':
                                latest,
                                'Iteration':
                                f'{iteration_on_checkpoint * g_conf.BATCH_SIZE}/{len(dataset)}',
                                f'Validation Loss ({g_conf.LOSS_FUNCTION})':
                                loss,
                                'Output':
                                output[position].data.tolist(),
                                'GroundTruth':
                                dataset.extract_targets(
                                    data)[position].data.tolist(),
                                'Inputs':
                                dataset.extract_inputs(data)
                                [position].data.tolist()
                            }, latest)

                        # We get the average with a growing list of values
                        # Thanks to John D. Cook: http://www.johndcook.com/blog/standard_deviation/
                        iteration_on_checkpoint += 1
                        checkpoint_average_loss += (
                            loss -
                            checkpoint_average_loss) / iteration_on_checkpoint

                        print(
                            f"\rProgress: {100 * iteration_on_checkpoint * g_conf.BATCH_SIZE / len(dataset):3.4f}% - "
                            f"Average Loss ({g_conf.LOSS_FUNCTION}): {checkpoint_average_loss:.16f}",
                            end='')
                """
                    ########
                    Finish a round of validation, write results, wait for the next
                    ########
                """

                coil_logger.add_scalar(
                    f'Validation Loss ({g_conf.LOSS_FUNCTION})',
                    checkpoint_average_loss, latest, True)

                # Let's visualize the distribution of the loss
                coil_logger.add_histogram(
                    f'Validation Checkpoint Loss ({g_conf.LOSS_FUNCTION})',
                    checkpoint_average_loss, latest)

                if checkpoint_average_loss < best_loss:
                    best_loss = checkpoint_average_loss
                    best_loss_iter = latest

                coil_logger.add_message(
                    'Iterating', {
                        'Summary': {
                            'Loss': checkpoint_average_loss,
                            'BestLoss': best_loss,
                            'BestLossCheckpoint': best_loss_iter
                        },
                        'Checkpoint': latest
                    }, latest)

                l1_window.append(checkpoint_average_loss)
                coil_logger.write_on_error_csv(validation_dataset,
                                               checkpoint_average_loss, latest)

                # If we are using the finish when validation stops, we check the current checkpoint
                if g_conf.FINISH_ON_VALIDATION_STALE is not None:
                    if dlib.count_steps_without_decrease(l1_window) > 3 and \
                            dlib.count_steps_without_decrease_robust(l1_window) > 3:
                        coil_logger.write_stop(validation_dataset, latest)
                        break

            else:
                latest = get_latest_evaluated_checkpoint()
                time.sleep(1)

                coil_logger.add_message('Loading',
                                        {'Message': 'Waiting Checkpoint'})
                print("Waiting for the next Validation")

        print('\n' + 20 * '#')
        print('Finished validation!')
        print(20 * '#')
        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)

    except RuntimeError as e:
        if latest is not None:
            coil_logger.erase_csv(latest)
        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)
    def test_real_data_central_sampler(self):

        try:
            os.mkdir('_images')
        except:
            pass
        augmenter = Augmenter(g_conf.AUGMENTATION)

        dataset = CoILDataset('/home/felipe/Datasets/1HoursW1-3-6-8',
                              augmenter)

        g_conf.NUMBER_IMAGES_SEQUENCE = 1
        g_conf.SEQUENCE_STRIDE = 1
        #g_conf.LABELS_DIVISION = [[0,2,5], [0,2,5], [0,2,5]]
        g_conf.NUMBER_ITERATIONS = 1200
        g_conf.BATCH_SIZE = 120

        steerings = dataset.measurements[0, :]

        # TODO: read meta data and turn into a coool dictionary ?

        labels = dataset.measurements[24, :]

        print(np.unique(labels))

        print('position of camera',
              np.where(dataset.meta_data[:, 0] == b'camera'))

        camera_names = dataset.measurements[np.where(
            dataset.meta_data[:, 0] == b'camera'), :][0][0]
        print(" Camera names ")
        print(camera_names)

        keys = range(0, len(steerings) - g_conf.NUMBER_IMAGES_SEQUENCE)

        one_camera_data = splitter.label_split(camera_names, keys, [[0]])

        splitted_steer_labels = splitter.control_steer_split(
            dataset.measurements, dataset.meta_data, one_camera_data[0])

        for split_1 in splitted_steer_labels:
            for split_2 in split_1:
                for split_3 in split_2:
                    if split_3 not in one_camera_data[0]:
                        raise ValueError("not one camera")

        #weights = [1.0/len(g_conf.STEERING_DIVISION)]*len(g_conf.STEERING_DIVISION)

        #sampler = BatchSequenceSampler(splitted_steer_labels, 0, 120, g_conf.NUMBER_IMAGES_SEQUENCE,
        #                              g_conf.SEQUENCE_STRIDE, False)

        sampler = SubsetSampler(one_camera_data[0])

        big_steer_vec = []
        count = 0

        data_loader = torch.utils.data.DataLoader(dataset,
                                                  sampler=sampler,
                                                  batch_size=120,
                                                  num_workers=12,
                                                  pin_memory=True)

        for data in data_loader:

            image, measurements = data

            print(image['rgb'].shape)
            for i in range(120):
                name = '_images/' + str(count) + '.png'
                image_to_save = transforms.ToPILImage()(
                    image['rgb'][i][0].cpu())
                image_to_save.save(name)

                count += 1
Example #5
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: gpus ids for training
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu)
        g_conf.VARIABLE_WEIGHT = {}

        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')

        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case
        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
            print('iteration: ', iteration, 'best_loss: ', best_loss)
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read the dataset
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS) +
                              'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded dataset")

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.
        # define the sampling strategy for mini-batch, different samplers can be found in 'splitter.py'
        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)

        # Instatiate the network architecture
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()

        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE
                               )  # adabound and adamio can also be used here

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:
            # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        # freeze the perception module weights if required
        # for m in model.perception.parameters():
        #     m.requires_grad = False

        # total trainable parameters
        model_parameters = filter(lambda p: p.requires_grad,
                                  model.parameters())
        total_params = sum([np.prod(p.size()) for p in model_parameters])
        print('trainable parameters: ', total_params)

        # multi-gpu
        print('number of gpus: ', torch.cuda.device_count())
        if torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)

        criterion = Loss(g_conf.LOSS_FUNCTION)

        print('Start Training')

        st = time.time()
        for data in data_loader:

            # use this for early stopping if the validation loss is not coming down
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1

            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # additional learning rate scheduler - cyclic cosine annealing (https://arxiv.org/pdf/1704.00109.pdf)
            # adjust_learning_rate_cosine_annealing(optimizer, loss_window, iteration)

            capture_time = time.time()
            controls = data['directions']
            model.zero_grad()
            branches = model(torch.squeeze(data['rgb'].cuda()),
                             dataset.extract_inputs(data).cuda())
            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):
                if torch.cuda.device_count() > 1:
                    state_dict_save = model.module.state_dict()
                else:
                    state_dict_save = model.state_dict()

                state = {
                    'iteration': iteration,
                    'state_dict': state_dict_save,
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            if torch.cuda.device_count() > 1:
                output = model.module.extract_branch(
                    torch.stack(branches[0:4]), controls)
            else:
                output = model.extract_branch(torch.stack(branches[0:4]),
                                              controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message(
                'Iterating', {
                    'Iteration':
                    iteration,
                    'Loss':
                    loss.data.tolist(),
                    'Images/s':
                    (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                    'BestLoss':
                    best_loss,
                    'BestLossIteration':
                    best_loss_iter,
                    'Output':
                    output[position].data.tolist(),
                    'GroundTruth':
                    dataset.extract_targets(data)[position].data.tolist(),
                    'Error':
                    error[position].data.tolist(),
                    'Inputs':
                    dataset.extract_inputs(data)[position].data.tolist()
                }, iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))
            st = time.time()

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #6
0
def execute(gpu,
            exp_batch,
            exp_alias,
            json_file_path,
            suppress_output,
            encoder_params=None,
            plot_attentions=False):
    try:
        # We set the visible cuda devices
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        if json_file_path is not None:
            json_file_name = json_file_path.split('/')[-1].split('.')[-2]
        else:
            raise RuntimeError(
                "You need to define the validation json file path")

        # At this point the log file with the correct naming is created.
        merge_with_yaml(
            os.path.join('configs', exp_batch, exp_alias + '.yaml'),
            encoder_params)
        if plot_attentions:
            set_type_of_process('validation',
                                json_file_name + '_plotAttention')
        else:
            set_type_of_process('validation', json_file_name)

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        # We create file for saving validation results
        summary_file = os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME,
                                    g_conf.PROCESS_NAME + '_csv',
                                    'valid_summary_1camera.csv')
        g_conf.immutable(False)
        g_conf.DATA_USED = 'central'
        g_conf.immutable(True)
        if not os.path.exists(summary_file):
            csv_outfile = open(summary_file, 'w')
            csv_outfile.write(
                "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s\n" %
                ('step', 'accumulated_pedestrian_TP',
                 'accumulated_pedestrian_FP', 'accumulated_pedestrian_FN',
                 'accumulated_pedestrian_TN', 'accumulated_vehicle_stop_TP',
                 'accumulated_vehicle_stop_FP', 'accumulated_vehicle_stop_FN',
                 'accumulated_vehicle_stop_TN', 'accumulated_red_tl_TP',
                 'accumulated_red_tl_FP', 'accumulated_red_tl_FN',
                 'accumulated_red_tl_TN', 'MAE_relative_angle'))
            csv_outfile.close()

        latest = get_latest_evaluated_checkpoint_2(summary_file)

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the HDFILES positions from the root directory as a in a vector.
        #full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
        augmenter = Augmenter(None)
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(transform=augmenter,
                              preload_name=g_conf.PROCESS_NAME + '_' +
                              g_conf.DATA_USED,
                              process_type='validation',
                              vd_json_file_path=json_file_path)
        print("Loaded Validation dataset")

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.

        # The data loader is the multi threaded module from pytorch that release a number of
        # workers to get all the data.
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=g_conf.BATCH_SIZE,
            shuffle=False,
            num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
            pin_memory=True)

        if g_conf.MODEL_TYPE in ['one-step-affordances']:
            # one step training, no need to retrain FC layers, we just get the output of encoder model as prediciton
            model = EncoderModel(g_conf.ENCODER_MODEL_TYPE,
                                 g_conf.ENCODER_MODEL_CONFIGURATION)
            model.cuda()
            #print(model)

        elif g_conf.MODEL_TYPE in ['separate-affordances']:
            model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION,
                              g_conf.ENCODER_MODEL_CONFIGURATION)
            model.cuda()
            #print(model)

            encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE,
                                         g_conf.ENCODER_MODEL_CONFIGURATION)
            encoder_model.cuda()
            encoder_model.eval()

            # Here we load the pre-trained encoder (not fine-tunned)
            if g_conf.FREEZE_ENCODER:
                if encoder_params is not None:
                    encoder_checkpoint = torch.load(
                        os.path.join(
                            '_logs', encoder_params['encoder_folder'],
                            encoder_params['encoder_exp'], 'checkpoints',
                            str(encoder_params['encoder_checkpoint']) +
                            '.pth'))
                    print(
                        "Encoder model ",
                        str(encoder_params['encoder_checkpoint']),
                        "loaded from ",
                        os.path.join('_logs', encoder_params['encoder_folder'],
                                     encoder_params['encoder_exp'],
                                     'checkpoints'))
                    encoder_model.load_state_dict(
                        encoder_checkpoint['state_dict'])
                    encoder_model.eval()
                for param_ in encoder_model.parameters():
                    param_.requires_grad = False

        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):
            latest = get_next_checkpoint_2(g_conf.TEST_SCHEDULE, summary_file)
            if os.path.exists(
                    os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME,
                                 'checkpoints',
                                 str(latest) + '.pth')):
                checkpoint = torch.load(
                    os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME,
                                 'checkpoints',
                                 str(latest) + '.pth'))
                checkpoint_iteration = checkpoint['iteration']
                model.load_state_dict(checkpoint['state_dict'])
                print("Validation checkpoint ", checkpoint_iteration)
                model.eval()
                for param_ in model.parameters():
                    param_.requires_grad = False

                # Here we load the fine-tunned encoder
                if not g_conf.FREEZE_ENCODER and g_conf.MODEL_TYPE not in [
                        'one-step-affordances'
                ]:
                    encoder_checkpoint = torch.load(
                        os.path.join('_logs', exp_batch,
                                     g_conf.EXPERIMENT_NAME, 'checkpoints',
                                     str(latest) + '_encoder.pth'))
                    print(
                        "FINE TUNNED encoder model ",
                        str(latest) + '_encoder.pth', "loaded from ",
                        os.path.join('_logs', exp_batch,
                                     g_conf.EXPERIMENT_NAME, 'checkpoints'))
                    encoder_model.load_state_dict(
                        encoder_checkpoint['state_dict'])
                    encoder_model.eval()
                    for param_ in encoder_model.parameters():
                        param_.requires_grad = False

                accumulated_mae_ra = 0
                accumulated_pedestrian_TP = 0
                accumulated_pedestrian_TN = 0
                accumulated_pedestrian_FN = 0
                accumulated_pedestrian_FP = 0

                accumulated_red_tl_TP = 0
                accumulated_red_tl_TN = 0
                accumulated_red_tl_FP = 0
                accumulated_red_tl_FN = 0

                accumulated_vehicle_stop_TP = 0
                accumulated_vehicle_stop_TN = 0
                accumulated_vehicle_stop_FP = 0
                accumulated_vehicle_stop_FN = 0

                iteration_on_checkpoint = 0

                for data in data_loader:
                    if g_conf.MODEL_TYPE in ['one-step-affordances']:
                        c_output, r_output, layers = model.forward_outputs(
                            torch.squeeze(data['rgb'].cuda()),
                            dataset.extract_inputs(data).cuda(),
                            dataset.extract_commands(data).cuda())

                    elif g_conf.MODEL_TYPE in ['separate-affordances']:
                        if g_conf.ENCODER_MODEL_TYPE in [
                                'action_prediction', 'stdim', 'ETEDIM',
                                'FIMBC', 'one-step-affordances'
                        ]:
                            e, layers = encoder_model.forward_encoder(
                                torch.squeeze(data['rgb'].cuda()),
                                dataset.extract_inputs(data).cuda(),
                                torch.squeeze(
                                    dataset.extract_commands(data).cuda()))
                            c_output, r_output = model.forward_test(e)

                        elif g_conf.ENCODER_MODEL_TYPE in [
                                'ETE', 'ETE_inverse_model', 'forward',
                                'ETE_stdim'
                        ]:
                            e, layers = encoder_model.forward_encoder(
                                torch.squeeze(data['rgb'].cuda()),
                                dataset.extract_inputs(data).cuda(),
                                torch.squeeze(
                                    dataset.extract_commands(data).cuda()))
                            c_output, r_output = model.forward_test(e)

                    if plot_attentions:
                        attentions_path = os.path.join(
                            '_logs', exp_batch, g_conf.EXPERIMENT_NAME,
                            g_conf.PROCESS_NAME + '_attentions_' + str(latest))

                        write_attentions(torch.squeeze(data['rgb']), layers,
                                         iteration_on_checkpoint,
                                         attentions_path)

                    # Accurancy = (TP+TN)/(TP+TN+FP+FN)
                    # F1-score = 2*TP / (2*TP + FN + FP)
                    classification_gt = dataset.extract_affordances_targets(
                        data, 'classification')
                    regression_gt = dataset.extract_affordances_targets(
                        data, 'regression')

                    TP = 0
                    FN = 0
                    FP = 0
                    TN = 0
                    for i in range(classification_gt.shape[0]):
                        if classification_gt[i, 0] == (
                                c_output[0][i, 0] < c_output[0][i, 1]).type(
                                    torch.FloatTensor) == 1:
                            TP += 1

                        elif classification_gt[
                                i, 0] == 1 and classification_gt[i, 0] != (
                                    c_output[0][i, 0] <
                                    c_output[0][i, 1]).type(torch.FloatTensor):
                            FN += 1

                        elif classification_gt[
                                i, 0] == 0 and classification_gt[i, 0] != (
                                    c_output[0][i, 0] <
                                    c_output[0][i, 1]).type(torch.FloatTensor):
                            FP += 1

                        if classification_gt[i, 0] == (
                                c_output[0][i, 0] < c_output[0][i, 1]).type(
                                    torch.FloatTensor) == 0:
                            TN += 1

                    accumulated_pedestrian_TP += TP
                    accumulated_pedestrian_TN += TN
                    accumulated_pedestrian_FP += FP
                    accumulated_pedestrian_FN += FN

                    TP = 0
                    FN = 0
                    FP = 0
                    TN = 0
                    for i in range(classification_gt.shape[0]):
                        if classification_gt[i, 1] == (
                                c_output[1][i, 0] < c_output[1][i, 1]).type(
                                    torch.FloatTensor) == 1:
                            TP += 1

                        elif classification_gt[
                                i, 1] == 1 and classification_gt[i, 1] != (
                                    c_output[1][i, 0] <
                                    c_output[1][i, 1]).type(torch.FloatTensor):
                            FN += 1

                        elif classification_gt[
                                i, 1] == 0 and classification_gt[i, 1] != (
                                    c_output[1][i, 0] <
                                    c_output[1][i, 1]).type(torch.FloatTensor):
                            FP += 1

                        if classification_gt[i, 1] == (
                                c_output[1][i, 0] < c_output[1][i, 1]).type(
                                    torch.FloatTensor) == 0:
                            TN += 1

                    accumulated_red_tl_TP += TP
                    accumulated_red_tl_TN += TN
                    accumulated_red_tl_FP += FP
                    accumulated_red_tl_FN += FN

                    TP = 0
                    FN = 0
                    FP = 0
                    TN = 0
                    for i in range(classification_gt.shape[0]):
                        if classification_gt[i, 2] == (
                                c_output[2][i, 0] < c_output[2][i, 1]).type(
                                    torch.FloatTensor) == 1:
                            TP += 1

                        elif classification_gt[i, 2] == 1 and classification_gt[i, 2] !=\
                                (c_output[2][i, 0] < c_output[2][i, 1]).type(torch.FloatTensor):
                            FN += 1

                        elif classification_gt[i, 2] == 0 and classification_gt[i, 2] !=\
                                (c_output[2][i, 0] < c_output[2][i, 1]).type(torch.FloatTensor):
                            FP += 1

                        if classification_gt[i, 2] == (
                                c_output[2][i, 0] < c_output[2][i, 1]).type(
                                    torch.FloatTensor) == 0:
                            TN += 1

                    accumulated_vehicle_stop_TP += TP
                    accumulated_vehicle_stop_TN += TN
                    accumulated_vehicle_stop_FP += FP
                    accumulated_vehicle_stop_FN += FN

                    # if the data was normalized during training, we need to transform it to its unit

                    write_regular_output(checkpoint_iteration,
                                         torch.squeeze(r_output[0]),
                                         regression_gt[:, 0])
                    mae_ra = torch.abs(regression_gt[:, 0] -
                                       torch.squeeze(r_output[0]).type(torch.FloatTensor)).\
                                            numpy()
                    accumulated_mae_ra += np.sum(mae_ra)

                    if iteration_on_checkpoint % 100 == 0:
                        print(
                            "Validation iteration: %d [%d/%d)] on Checkpoint %d "
                            %
                            (iteration_on_checkpoint, iteration_on_checkpoint,
                             len(data_loader), checkpoint_iteration))

                    iteration_on_checkpoint += 1

                # Here also need a better analysis. TODO divide into curve and other things
                MAE_relative_angle = accumulated_mae_ra / (len(dataset))

                csv_outfile = open(summary_file, 'a')
                csv_outfile.write(
                    "%s, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f" %
                    (checkpoint_iteration, accumulated_pedestrian_TP,
                     accumulated_pedestrian_FP, accumulated_pedestrian_FN,
                     accumulated_pedestrian_TN, accumulated_vehicle_stop_TP,
                     accumulated_vehicle_stop_FP, accumulated_vehicle_stop_FN,
                     accumulated_vehicle_stop_TN, accumulated_red_tl_TP,
                     accumulated_red_tl_FP, accumulated_red_tl_FN,
                     accumulated_red_tl_TN, MAE_relative_angle))

                csv_outfile.write("\n")
                csv_outfile.close()

            else:
                print('The checkpoint you want to validate is not yet ready ',
                      str(latest))

        coil_logger.add_message('Finished', {})
        print('VALIDATION FINISHED !!')
        print('  Validation results saved in ==> ', summary_file)

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)

    except RuntimeError as e:
        if latest is not None:
            coil_logger.erase_csv(latest)
        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)
Example #7
0
def execute(gpu, exp_batch, exp_alias, dataset_name, validation_set=False):
    latest = None
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu
    g_conf.immutable(False)
    # At this point the log file with the correct naming is created.
    merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'))
    # If using validation dataset, fix a very high number of hours
    if validation_set:
        g_conf.NUMBER_OF_HOURS = 10000
    g_conf.immutable(True)

    # Define the dataset.
    full_dataset = [
        os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
    ]
    augmenter = Augmenter(None)
    if validation_set:
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[dataset_name])
    else:
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[
                                  str(g_conf.NUMBER_OF_HOURS) + 'hours_' +
                                  dataset_name
                              ],
                              train_dataset=True)

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=g_conf.BATCH_SIZE,
        shuffle=False,
        num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
        pin_memory=True)

    # Define model
    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
    """ 
        ######
        Run a single driving benchmark specified by the checkpoint were validation is stale
        ######
    """

    if g_conf.FINISH_ON_VALIDATION_STALE is not None:

        while validation_stale_point(
                g_conf.FINISH_ON_VALIDATION_STALE) is None:
            time.sleep(0.1)

        validation_state_iteration = validation_stale_point(
            g_conf.FINISH_ON_VALIDATION_STALE)

        checkpoint = torch.load(
            os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                         str(validation_state_iteration) + '.pth'))
        print("Validation loaded ", validation_state_iteration)
    else:
        """
        #####
        Main Loop , Run a benchmark for each specified checkpoint on the "Test Configuration"
        #####
        """
        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):
            # Get the correct checkpoint
            # We check it for some task name, all of then are ready at the same time
            if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE,
                                        control_filename + '_' + task_list[0]):

                latest = get_next_checkpoint(
                    g_conf.TEST_SCHEDULE,
                    control_filename + '_' + task_list[0])

                checkpoint = torch.load(
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(latest) + '.pth'))
                print("Validation loaded ", latest)
            else:
                time.sleep(0.1)

    # Load the model and prepare set it for evaluation
    model.load_state_dict(checkpoint['state_dict'])
    model.cuda()
    model.eval()

    first_iter = True
    for data in data_loader:

        # Compute the forward pass on a batch from the dataset and get the intermediate
        # representations of the squeeze network
        if "seg" in g_conf.SENSORS.keys():
            perception_rep, speed_rep, intentions_rep = \
                model.get_intermediate_representations(data,
                                                       dataset.extract_inputs(data).cuda(),
                                                       dataset.extract_intentions(data).cuda())
            perception_rep = perception_rep.data.cpu()
            speed_rep = speed_rep.data.cpu()
            intentions_rep = intentions_rep.data.cpu()
        if first_iter:
            perception_rep_all = perception_rep
            speed_rep_all = speed_rep
            intentions_rep_all = intentions_rep
        else:
            perception_rep_all = torch.cat(
                [perception_rep_all, perception_rep], 0)
            speed_rep_all = torch.cat([speed_rep_all, speed_rep], 0)
            intentions_rep_all = torch.cat(
                [intentions_rep_all, intentions_rep], 0)
        first_iter = False

    # Save intermediate representations
    perception_rep_all = perception_rep_all.tolist()
    speed_rep_all = speed_rep_all.tolist()
    intentions_rep_all = intentions_rep_all.tolist()
    np.save(
        os.path.join(
            '_preloads', exp_batch + '_' + exp_alias + '_' + dataset_name +
            '_representations'),
        [perception_rep_all, speed_rep_all, intentions_rep_all])
Example #8
0
def execute(gpu,
            exp_batch,
            exp_alias,
            state_dict,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS) +
                              'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded dataset")

        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()

        if state_dict != '':
            seg_model = ERFNet_Fast(2)
            seg_model = load_my_state_dict(seg_model, torch.load(state_dict))
            seg_model.cuda()

        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        print("Before the loss")

        criterion = Loss(g_conf.LOSS_FUNCTION)
        color_transforms = Colorizes(2)
        board = Dashboard(8097)

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # get the control commands from float_data, size = [120,1]

            capture_time = time.time()
            controls = data['directions']
            # The output(branches) is a list of 5 branches results, each branch is with size [120,3]
            model.zero_grad()
            if state_dict != '':
                with torch.no_grad():
                    repre = seg_model(torch.squeeze(data['rgb'].cuda()),
                                      only_encode=False)
                    inputs = repre
                    imgs = color_transforms(inputs)
                inputs = inputs.float().cuda()
            else:
                inputs = torch.squeeze(data['rgb'].cuda())

            # vis
            board.image(
                torch.squeeze(data['rgb'])[0].cpu().data,
                '(train) input iter: ' + str(iteration))
            board.image(imgs[0].cpu().data,
                        '(train) output iter: ' + str(iteration))

            branches = model(inputs, dataset.extract_inputs(data).cuda())
            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message(
                'Iterating', {
                    'Iteration':
                    iteration,
                    'Loss':
                    loss.data.tolist(),
                    'Images/s':
                    (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                    'BestLoss':
                    best_loss,
                    'BestLossIteration':
                    best_loss_iter,
                    'Output':
                    output[position].data.tolist(),
                    'GroundTruth':
                    dataset.extract_targets(data)[position].data.tolist(),
                    'Error':
                    error[position].data.tolist(),
                    'Inputs':
                    dataset.extract_inputs(data)[position].data.tolist()
                }, iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #9
0
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output=True, yaml_file=None):
    latest = None
    # try:
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    # At this point the log file with the correct naming is created.
    path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias+'.yaml')
    if yaml_file is not None:
      path_to_yaml_file = os.path.join(yaml_file, exp_alias+'.yaml')
    merge_with_yaml(path_to_yaml_file)
    # The validation dataset is always fully loaded, so we fix a very high number of hours
    # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code
    
    """
    # commented out to simplify the code
    set_type_of_process('validation', dataset_name)

    if not os.path.exists('_output_logs'):
        os.mkdir('_output_logs')

    if suppress_output:
        sys.stdout = open(os.path.join('_output_logs',
                                       exp_alias + '_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
        sys.stderr = open(os.path.join('_output_logs',
                          exp_alias + '_err_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
    """

    # Define the dataset. This structure is has the __get_item__ redefined in a way
    # that you can access the HDFILES positions from the root directory as a in a vector.
    
    full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
    augmenter = Augmenter(None)
    # Definition of the dataset to be used. Preload name is just the validation data name
    print ('full dataset path: ', full_dataset)
    dataset = CoILDataset(full_dataset, transform=augmenter,
                          preload_name=dataset_name)

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(dataset, batch_size=g_conf.BATCH_SIZE,
                                              shuffle=False,
                                              num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
                                              pin_memory=True)

    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)

    """ removing this segment to simplify code
    # The window used to keep track of the trainings
    l1_window = []
    latest = get_latest_evaluated_checkpoint()
    if latest is not None:  # When latest is noe
        l1_window = coil_logger.recover_loss_window(dataset_name, None)
    """
    
    model.cuda()

    best_mse = 1000
    best_error = 1000
    best_mse_iter = 0
    best_error_iter = 0

    # modified validation code from here to run a single model
    # checkpoint = torch.load(os.path.join(g_conf.VALIDATION_CHECKPOINT_PATH
    #                        , 'checkpoints', g_conf.VALIDATION_CHECKPOINT_ITERATION + '.pth'))
    checkpoint = torch.load(args.checkpoint)
    checkpoint_iteration = checkpoint['iteration']
    print("model loaded ", checkpoint_iteration)

    model.load_state_dict(checkpoint['state_dict'])

    model.eval()
    accumulated_mse = 0
    accumulated_error = 0
    iteration_on_checkpoint = 0

    # considering steer, throttle & brake so 3x3 matrix
    normalized_covariate_shift = torch.zeros(3,3)

    print ('data_loader size: ', len(data_loader))
    total_output = []
    path_names = []
    for data in data_loader:

        # Compute the forward pass on a batch from  the validation dataset
        path_names += data[1]
        controls = data[0]['directions']
        # get prefinal branch activations, only the last layers have dropout
        output = model.get_prefinal_layer(torch.squeeze(data[0]['rgb']).cuda(),
                                      dataset.extract_inputs(data[0]).cuda(),
                                      controls)
        total_output += output.detach().cpu().tolist()

        iteration_on_checkpoint += 1
        if iteration_on_checkpoint % 50 == 0:
            print ('iter: ', iteration_on_checkpoint)

    print (len(total_output), len(path_names))
    i = 0
    st = time.time()
    for act, name in zip(total_output, path_names):
        episode_num = name.split('/')[-2]
        frame_num = name.split('/')[-1].split('_')[-1].split('.')[0]
        if not os.path.isdir(os.path.join(args.save_path, args.dataset_name, episode_num)):
            os.mkdir(os.path.join(args.save_path, args.dataset_name, episode_num))
        file_name = 'Activation_'+frame_num
        i += 1
        if i%1000 == 0:
            print ('iteration: ', i)
        # save activations for each image, to be used for computing the uncertainity later
        torch.save(act, os.path.join(args.save_path, args.dataset_name, episode_num, file_name))
    print ('time taken: ', time.time()-st)
Example #10
0
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output):
    latest = None
    try:
        # We set the visible cuda devices
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        # At this point the log file with the correct naming is created.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        # The validation dataset is always fully loaded, so we fix a very high number of hours
        g_conf.NUMBER_OF_HOURS = 10000
        set_type_of_process('validation', dataset_name)

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        # Define the dataset.
        full_dataset = [
            os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
        ]
        augmenter = Augmenter(None)
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[dataset_name])

        # The data loader is the multi threaded module from pytorch that release a number of
        # workers to get all the data.
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=g_conf.BATCH_SIZE,
            shuffle=False,
            num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
            pin_memory=True)

        # Create model.
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        # The window used to keep track of the validation loss
        l1_window = []
        # If we have evaluated a checkpoint, get the validation losses of all the previously
        # evaluated checkpoints (validation loss is used for early stopping)
        latest = get_latest_evaluated_checkpoint()
        if latest is not None:  # When latest is noe
            l1_window = coil_logger.recover_loss_window(dataset_name, None)

        model.cuda()

        best_mse = 1000
        best_error = 1000
        best_mse_iter = 0
        best_error_iter = 0

        # Loop to validate all checkpoints as they are saved during training
        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):
            if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):
                with torch.no_grad():
                    # Get and load latest checkpoint
                    latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)

                    checkpoint = torch.load(
                        os.path.join('_logs', exp_batch, exp_alias,
                                     'checkpoints',
                                     str(latest) + '.pth'))
                    checkpoint_iteration = checkpoint['iteration']
                    print("Validation loaded ", checkpoint_iteration)

                    model.load_state_dict(checkpoint['state_dict'])
                    model.eval()

                    accumulated_mse = 0
                    accumulated_error = 0
                    iteration_on_checkpoint = 0
                    if g_conf.USE_REPRESENTATION_LOSS:
                        accumulated_perception_rep_mse = 0
                        accumulated_speed_rep_mse = 0
                        accumulated_intentions_rep_mse = 0
                        accumulated_rep_mse = 0
                        accumulated_perception_rep_error = 0
                        accumulated_speed_rep_error = 0
                        accumulated_intentions_rep_error = 0
                        accumulated_rep_error = 0

                    # Validation loop
                    for data in data_loader:

                        # Compute the forward pass on a batch from  the validation dataset
                        controls = data['directions']

                        # Run model forward and get outputs
                        # First case corresponds to squeeze network, second case corresponds to driving model without
                        # mimicking losses, last case corresponds to mimic network
                        if "seg" in g_conf.SENSORS.keys():
                            output = model.forward_branch(
                                data,
                                dataset.extract_inputs(data).cuda(), controls,
                                dataset.extract_intentions(data).cuda())
                        elif not g_conf.USE_REPRESENTATION_LOSS:
                            output = model.forward_branch(
                                data,
                                dataset.extract_inputs(data).cuda(), controls)
                        else:
                            output, intermediate_reps = model.forward_branch(
                                data,
                                dataset.extract_inputs(data).cuda(), controls)

                        write_regular_output(checkpoint_iteration, output)

                        # Compute control loss on current validation batch and accumulate it
                        targets_to_use = dataset.extract_targets(data)

                        mse = torch.mean(
                            (output - targets_to_use.cuda())**2).data.tolist()
                        mean_error = torch.mean(
                            torch.abs(output -
                                      targets_to_use.cuda())).data.tolist()

                        accumulated_error += mean_error
                        accumulated_mse += mse

                        error = torch.abs(output - targets_to_use.cuda())

                        # Compute mimicking losses on current validation batch and accumulate it
                        if g_conf.USE_REPRESENTATION_LOSS:
                            expert_reps = dataset.extract_representations(data)
                            # First L1 losses (seg mask, speed, intention mimicking losses)
                            if g_conf.USE_PERCEPTION_REP_LOSS:
                                perception_rep_loss = torch.sum(
                                    torch.abs(intermediate_reps[0] -
                                              expert_reps[0].cuda())
                                ).data.tolist() / (3 * output.shape[0])
                            else:
                                perception_rep_loss = 0
                            if g_conf.USE_SPEED_REP_LOSS:
                                speed_rep_loss = torch.sum(
                                    torch.abs(intermediate_reps[1] -
                                              expert_reps[1].cuda())
                                ).data.tolist() / (3 * output.shape[0])
                            else:
                                speed_rep_loss = 0
                            if g_conf.USE_INTENTION_REP_LOSS:
                                intentions_rep_loss = torch.sum(
                                    torch.abs(intermediate_reps[2] -
                                              expert_reps[2].cuda())
                                ).data.tolist() / (3 * output.shape[0])
                            else:
                                intentions_rep_loss = 0
                            rep_error = g_conf.REP_LOSS_WEIGHT * (
                                perception_rep_loss + speed_rep_loss +
                                intentions_rep_loss)
                            accumulated_perception_rep_error += perception_rep_loss
                            accumulated_speed_rep_error += speed_rep_loss
                            accumulated_intentions_rep_error += intentions_rep_loss
                            accumulated_rep_error += rep_error

                            # L2 losses now
                            if g_conf.USE_PERCEPTION_REP_LOSS:
                                perception_rep_loss = torch.sum(
                                    (intermediate_reps[0] -
                                     expert_reps[0].cuda())**
                                    2).data.tolist() / (3 * output.shape[0])
                            else:
                                perception_rep_loss = 0
                            if g_conf.USE_SPEED_REP_LOSS:
                                speed_rep_loss = torch.sum(
                                    (intermediate_reps[1] -
                                     expert_reps[1].cuda())**
                                    2).data.tolist() / (3 * output.shape[0])
                            else:
                                speed_rep_loss = 0
                            if g_conf.USE_INTENTION_REP_LOSS:
                                intentions_rep_loss = torch.sum(
                                    (intermediate_reps[2] -
                                     expert_reps[2].cuda())**
                                    2).data.tolist() / (3 * output.shape[0])
                            else:
                                intentions_rep_loss = 0
                            rep_mse = g_conf.REP_LOSS_WEIGHT * (
                                perception_rep_loss + speed_rep_loss +
                                intentions_rep_loss)
                            accumulated_perception_rep_mse += perception_rep_loss
                            accumulated_speed_rep_mse += speed_rep_loss
                            accumulated_intentions_rep_mse += intentions_rep_loss
                            accumulated_rep_mse += rep_mse

                        # Log a random position
                        position = random.randint(
                            0,
                            len(output.data.tolist()) - 1)

                        # Logging
                        if g_conf.USE_REPRESENTATION_LOSS:
                            total_mse = mse + rep_mse
                            total_error = mean_error + rep_error
                            coil_logger.add_message(
                                'Iterating', {
                                    'Checkpoint':
                                    latest,
                                    'Iteration':
                                    (str(iteration_on_checkpoint * 120) + '/' +
                                     str(len(dataset))),
                                    'MeanError':
                                    mean_error,
                                    'MSE':
                                    mse,
                                    'RepMeanError':
                                    rep_error,
                                    'RepMSE':
                                    rep_mse,
                                    'MeanTotalError':
                                    total_error,
                                    'TotalMSE':
                                    total_mse,
                                    'Output':
                                    output[position].data.tolist(),
                                    'GroundTruth':
                                    targets_to_use[position].data.tolist(),
                                    'Error':
                                    error[position].data.tolist(),
                                    'Inputs':
                                    dataset.extract_inputs(
                                        data)[position].data.tolist()
                                }, latest)
                        else:
                            coil_logger.add_message(
                                'Iterating', {
                                    'Checkpoint':
                                    latest,
                                    'Iteration':
                                    (str(iteration_on_checkpoint * 120) + '/' +
                                     str(len(dataset))),
                                    'MeanError':
                                    mean_error,
                                    'MSE':
                                    mse,
                                    'Output':
                                    output[position].data.tolist(),
                                    'GroundTruth':
                                    targets_to_use[position].data.tolist(),
                                    'Error':
                                    error[position].data.tolist(),
                                    'Inputs':
                                    dataset.extract_inputs(
                                        data)[position].data.tolist()
                                }, latest)
                        iteration_on_checkpoint += 1

                        if g_conf.USE_REPRESENTATION_LOSS:
                            print("Iteration %d  on Checkpoint %d : Error %f" %
                                  (iteration_on_checkpoint,
                                   checkpoint_iteration, total_error))
                        else:
                            print("Iteration %d  on Checkpoint %d : Error %f" %
                                  (iteration_on_checkpoint,
                                   checkpoint_iteration, mean_error))
                    """
                        ########
                        Finish a round of validation, write results, wait for the next
                        ########
                    """
                    # Compute average L1 and L2 losses over whole round of validation and log them
                    checkpoint_average_mse = accumulated_mse / (
                        len(data_loader))
                    checkpoint_average_error = accumulated_error / (
                        len(data_loader))
                    coil_logger.add_scalar('L2 Loss', checkpoint_average_mse,
                                           latest, True)
                    coil_logger.add_scalar('Loss', checkpoint_average_error,
                                           latest, True)

                    if g_conf.USE_REPRESENTATION_LOSS:
                        checkpoint_average_perception_rep_mse = accumulated_perception_rep_mse / (
                            len(data_loader))
                        checkpoint_average_speed_rep_mse = accumulated_speed_rep_mse / (
                            len(data_loader))
                        checkpoint_average_intentions_rep_mse = accumulated_intentions_rep_mse / (
                            len(data_loader))
                        checkpoint_average_rep_mse = accumulated_rep_mse / (
                            len(data_loader))
                        checkpoint_average_total_mse = checkpoint_average_mse + checkpoint_average_rep_mse

                        checkpoint_average_perception_rep_error = accumulated_perception_rep_error / (
                            len(data_loader))
                        checkpoint_average_speed_rep_error = accumulated_speed_rep_error / (
                            len(data_loader))
                        checkpoint_average_intentions_rep_error = accumulated_intentions_rep_error / (
                            len(data_loader))
                        checkpoint_average_rep_error = accumulated_rep_error / (
                            len(data_loader))
                        checkpoint_average_total_error = checkpoint_average_error + checkpoint_average_rep_mse

                        # Log L1/L2 loss terms
                        coil_logger.add_scalar(
                            'Perception Rep Loss',
                            checkpoint_average_perception_rep_mse, latest,
                            True)
                        coil_logger.add_scalar(
                            'Speed Rep Loss', checkpoint_average_speed_rep_mse,
                            latest, True)
                        coil_logger.add_scalar(
                            'Intentions Rep Loss',
                            checkpoint_average_intentions_rep_mse, latest,
                            True)
                        coil_logger.add_scalar('Overall Rep Loss',
                                               checkpoint_average_rep_mse,
                                               latest, True)
                        coil_logger.add_scalar('Total L2 Loss',
                                               checkpoint_average_total_mse,
                                               latest, True)

                        coil_logger.add_scalar(
                            'Perception Rep Error',
                            checkpoint_average_perception_rep_error, latest,
                            True)
                        coil_logger.add_scalar(
                            'Speed Rep Error',
                            checkpoint_average_speed_rep_error, latest, True)
                        coil_logger.add_scalar(
                            'Intentions Rep Error',
                            checkpoint_average_intentions_rep_error, latest,
                            True)
                        coil_logger.add_scalar('Total Rep Error',
                                               checkpoint_average_rep_error,
                                               latest, True)
                        coil_logger.add_scalar('Total Loss',
                                               checkpoint_average_total_error,
                                               latest, True)
                    else:
                        checkpoint_average_total_mse = checkpoint_average_mse
                        checkpoint_average_total_error = checkpoint_average_error

                    if checkpoint_average_total_mse < best_mse:
                        best_mse = checkpoint_average_total_mse
                        best_mse_iter = latest

                    if checkpoint_average_total_error < best_error:
                        best_error = checkpoint_average_total_error
                        best_error_iter = latest

                    # Print for logging / to terminal validation results
                    if g_conf.USE_REPRESENTATION_LOSS:
                        coil_logger.add_message(
                            'Iterating', {
                                'Summary': {
                                    'Control Error': checkpoint_average_error,
                                    'Control Loss': checkpoint_average_mse,
                                    'Rep Error': checkpoint_average_rep_error,
                                    'Rep Loss': checkpoint_average_rep_mse,
                                    'Error': checkpoint_average_total_error,
                                    'Loss': checkpoint_average_total_mse,
                                    'BestError': best_error,
                                    'BestMSE': best_mse,
                                    'BestMSECheckpoint': best_mse_iter,
                                    'BestErrorCheckpoint': best_error_iter
                                },
                                'Checkpoint': latest
                            }, latest)
                    else:
                        coil_logger.add_message(
                            'Iterating', {
                                'Summary': {
                                    'Error': checkpoint_average_error,
                                    'Loss': checkpoint_average_mse,
                                    'BestError': best_error,
                                    'BestMSE': best_mse,
                                    'BestMSECheckpoint': best_mse_iter,
                                    'BestErrorCheckpoint': best_error_iter
                                },
                                'Checkpoint': latest
                            }, latest)

                    # Save validation loss history (validation loss is used for early stopping)
                    l1_window.append(checkpoint_average_total_error)
                    coil_logger.write_on_error_csv(
                        dataset_name, checkpoint_average_total_error)

                    # Early stopping
                    if g_conf.FINISH_ON_VALIDATION_STALE is not None:
                        if dlib.count_steps_without_decrease(l1_window) > 3 and \
                                dlib.count_steps_without_decrease_robust(l1_window) > 3:
                            coil_logger.write_stop(dataset_name, latest)
                            break

            else:

                latest = get_latest_evaluated_checkpoint()
                time.sleep(1)

                coil_logger.add_message('Loading',
                                        {'Message': 'Waiting Checkpoint'})
                print("Waiting for the next Validation")

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)

    except RuntimeError as e:
        if latest is not None:
            coil_logger.erase_csv(latest)
        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)
Example #11
0
def execute(gpu,
            exp_batch,
            exp_alias,
            dataset_name,
            suppress_output=True,
            yaml_file=None):
    latest = None
    # try:
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    # At this point the log file with the correct naming is created.
    path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias + '.yaml')
    if yaml_file is not None:
        path_to_yaml_file = os.path.join(yaml_file, exp_alias + '.yaml')
    merge_with_yaml(path_to_yaml_file)
    # The validation dataset is always fully loaded, so we fix a very high number of hours
    # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code
    """
    # commenting out this segment to simplify code
    set_type_of_process('validation', dataset_name)

    if not os.path.exists('_output_logs'):
        os.mkdir('_output_logs')

    if suppress_output:
        sys.stdout = open(os.path.join('_output_logs',
                                       exp_alias + '_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
        sys.stderr = open(os.path.join('_output_logs',
                          exp_alias + '_err_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
    """

    # Define the dataset. This structure is has the __get_item__ redefined in a way
    # that you can access the HDFILES positions from the root directory as a in a vector.

    full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                dataset_name)  # original code
    augmenter = Augmenter(None)
    # Definition of the dataset to be used. Preload name is just the validation data name
    print('full dataset path: ', full_dataset)
    dataset = CoILDataset(full_dataset,
                          transform=augmenter,
                          preload_name=dataset_name)

    # Creates the sampler, this part is responsible for managing the keys. It divides
    # all keys depending on the measurements and produces a set of keys for each bach.

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=g_conf.BATCH_SIZE,
        shuffle=False,
        num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
        pin_memory=True)

    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
    """ removing this segment to simplify code
    # The window used to keep track of the trainings
    l1_window = []
    latest = get_latest_evaluated_checkpoint()
    if latest is not None:  # When latest is noe
        l1_window = coil_logger.recover_loss_window(dataset_name, None)
    """

    model.cuda()

    best_mse = 1000
    best_error = 1000
    best_mse_iter = 0
    best_error_iter = 0

    # modified validation code from here to run a single model
    # checkpoint = torch.load(os.path.join(g_conf.VALIDATION_CHECKPOINT_PATH
    #                        , 'checkpoints', g_conf.VALIDATION_CHECKPOINT_ITERATION + '.pth'))
    checkpoint = torch.load(args.checkpoint)
    checkpoint_iteration = checkpoint['iteration']
    print("model loaded ", checkpoint_iteration)

    model.load_state_dict(checkpoint['state_dict'])

    model.train()
    accumulated_mse = 0
    accumulated_error = 0
    iteration_on_checkpoint = 0

    print('data_loader size: ', len(data_loader))
    total_var = []
    for data in data_loader:
        # dataloader directly loads the saved activations
        # Compute the forward pass on a batch from  the validation dataset
        controls = data['directions']
        curr_var = []
        for i in range(100):
            output = model.branches(data['activation'].cuda())
            output_vec = model.extract_branch(torch.stack(output), controls)
            curr_var.append(output_vec.detach().cpu().numpy())

        curr_var = np.array(curr_var)
        compute_var = np.var(curr_var, axis=0)
        total_var += compute_var.tolist()

        iteration_on_checkpoint += 1
        if iteration_on_checkpoint % 50 == 0:
            print('iteration: ', iteration_on_checkpoint)

    total_var = np.array(total_var)
    print(len(total_var), total_var.shape)

    # save the computed variance array, this would be used for uncertainty based sampling in 'tools/filter_dagger_data_var.py'
    np.save(
        os.path.join(args.save_path, args.dataset_name, 'computed_var.npy'),
        total_var)
Example #12
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Seed RNGs
        torch.manual_seed(g_conf.MAGICAL_SEED)
        random.seed(g_conf.MAGICAL_SEED)

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset.
        # Can specify a list of training datasets or just a single training dataset
        if len(g_conf.TRAIN_DATASET_NAMES) == 0:
            train_dataset_list = [g_conf.TRAIN_DATASET_NAME]
        else:
            train_dataset_list = g_conf.TRAIN_DATASET_NAMES
        full_dataset = [
            os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
            for dataset_name in train_dataset_list
        ]

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[
                                  str(g_conf.NUMBER_OF_HOURS) + 'hours_' +
                                  dataset_name
                                  for dataset_name in train_dataset_list
                              ],
                              train_dataset=True)
        print("Loaded dataset")

        # Create dataloader, model, and optimizer
        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        # If we have a previous checkpoint, load model, optimizer, and record of previous
        # train loss values (used for the learning rate schedule)
        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        print("Before the loss")

        # Define control loss function
        criterion = Loss(g_conf.LOSS_FUNCTION)

        if iteration == 0 and is_ready_to_save(iteration):

            state = {
                'iteration': iteration,
                'state_dict': model.state_dict(),
                'best_loss': best_loss,
                'total_time': accumulated_time,
                'optimizer': optimizer.state_dict(),
                'best_loss_iter': best_loss_iter
            }
            torch.save(
                state,
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(iteration) + '.pth'))
        # Training loop
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1

            # Adjust learning rate based on training loss
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            capture_time = time.time()
            model.zero_grad()

            controls = data['directions']

            # Run model forward and get outputs
            # First case corresponds to training squeeze network, second case corresponds to training driving model without
            # mimicking losses, last case corresponds to training mimic network
            if "seg" in g_conf.SENSORS.keys():
                branches = model(data,
                                 dataset.extract_inputs(data).cuda(),
                                 dataset.extract_intentions(data).cuda())
            elif not g_conf.USE_REPRESENTATION_LOSS:
                branches = model(data, dataset.extract_inputs(data).cuda())
            else:
                branches, intermediate_reps = model(
                    data,
                    dataset.extract_inputs(data).cuda())

            # Compute control loss
            targets_to_use = dataset.extract_targets(data)
            loss_function_params = {
                'branches': branches,
                'targets': targets_to_use.cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)

            # Compute mimicking loss
            if g_conf.USE_REPRESENTATION_LOSS:
                expert_reps = dataset.extract_representations(data)
                # Seg mask mimicking loss
                if g_conf.USE_PERCEPTION_REP_LOSS:
                    perception_rep_loss_elementwise = (
                        intermediate_reps[0] - expert_reps[0].cuda())**2
                    perception_rep_loss = g_conf.PERCEPTION_REP_WEIGHT * torch.sum(
                        perception_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    perception_rep_loss = torch.tensor(0.).cuda()
                # Speed mimicking loss
                if g_conf.USE_SPEED_REP_LOSS:
                    speed_rep_loss_elementwise = (intermediate_reps[1] -
                                                  expert_reps[1].cuda())**2
                    speed_rep_loss = g_conf.SPEED_REP_WEIGHT * torch.sum(
                        speed_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    speed_rep_loss = torch.tensor(0.).cuda()
                # Stop intentions mimicking loss
                if g_conf.USE_INTENTION_REP_LOSS:
                    intentions_rep_loss_elementwise = (
                        intermediate_reps[2] - expert_reps[2].cuda())**2
                    intentions_rep_loss = g_conf.INTENTIONS_REP_WEIGHT * torch.sum(
                        intentions_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    intentions_rep_loss = torch.tensor(0.).cuda()
                rep_loss = g_conf.REP_LOSS_WEIGHT * (
                    perception_rep_loss + speed_rep_loss + intentions_rep_loss)
                overall_loss = loss + rep_loss
            else:
                overall_loss = loss
            overall_loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            if g_conf.USE_REPRESENTATION_LOSS:
                coil_logger.add_scalar('Perception Rep Loss',
                                       perception_rep_loss.data, iteration)
                coil_logger.add_scalar('Speed Rep Loss', speed_rep_loss.data,
                                       iteration)
                coil_logger.add_scalar('Intentions Rep Loss',
                                       intentions_rep_loss.data, iteration)
                coil_logger.add_scalar('Overall Rep Loss', rep_loss.data,
                                       iteration)
                coil_logger.add_scalar('Total Loss', overall_loss.data,
                                       iteration)
            if 'rgb' in data:
                coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                      iteration)
            if overall_loss.data < best_loss:
                best_loss = overall_loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - targets_to_use.cuda())

            accumulated_time += time.time() - capture_time

            # Log to terminal and log file
            if g_conf.USE_REPRESENTATION_LOSS:
                coil_logger.add_message(
                    'Iterating', {
                        'Iteration':
                        iteration,
                        'Loss':
                        overall_loss.data.tolist(),
                        'Control Loss':
                        loss.data.tolist(),
                        'Rep Loss':
                        rep_loss.data.tolist(),
                        'Images/s':
                        (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                        'BestLoss':
                        best_loss,
                        'BestLossIteration':
                        best_loss_iter,
                        'Output':
                        output[position].data.tolist(),
                        'GroundTruth':
                        targets_to_use[position].data.tolist(),
                        'Error':
                        error[position].data.tolist(),
                        'Inputs':
                        dataset.extract_inputs(data)[position].data.tolist()
                    }, iteration)
            else:
                coil_logger.add_message(
                    'Iterating', {
                        'Iteration':
                        iteration,
                        'Loss':
                        loss.data.tolist(),
                        'Images/s':
                        (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                        'BestLoss':
                        best_loss,
                        'BestLossIteration':
                        best_loss_iter,
                        'Output':
                        output[position].data.tolist(),
                        'GroundTruth':
                        targets_to_use[position].data.tolist(),
                        'Error':
                        error[position].data.tolist(),
                        'Inputs':
                        dataset.extract_inputs(data)[position].data.tolist()
                    }, iteration)
            # Save training loss history (useful for restoring training runs since learning rate is adjusted
            # based on training loss)
            loss_window.append(overall_loss.data.tolist())
            coil_logger.write_on_error_csv('train', overall_loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, overall_loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #13
0
def execute(gpu, exp_batch, exp_alias, dataset_name, architecture,
            suppress_output):

    try:
        # We set the visible cuda devices
        torch.manual_seed(2)
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        # Validation available for:
        # coil_unit (UNIT + task combined)
        # coil_icra (Also used for finetuned models)
        # wgangp_lsd (Our architecture)

        architecture_name = architecture
        # At this point the log file with the correct naming is created.
        if architecture_name == 'coil_unit':
            pass
        elif architecture_name == 'wgangp_lsd':
            merge_with_yaml(
                os.path.join('/home/rohitrishabh/CoilWGAN/configs', exp_batch,
                             exp_alias + '.yaml'))
            set_type_of_process('validation', dataset_name)
        elif architecture_name == 'coil_icra':
            merge_with_yaml(
                os.path.join(
                    '/home/adas/CleanedCode/CoIL_Codes/coil_20-06/configs',
                    exp_batch, exp_alias + '.yaml'))
            set_type_of_process('validation', dataset_name)

            if monitorer.get_status(exp_batch, exp_alias + '.yaml',
                                    g_conf.PROCESS_NAME)[0] == "Finished":
                # TODO: print some cool summary or not ?
                return

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs',
                g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        #Define the dataset. This structure is has the __get_item__ redefined in a way
        #that you can access the HDFILES positions from the root directory as a in a vector.
        if dataset_name != []:
            full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                        dataset_name)
        else:
            full_dataset = os.environ["COIL_DATASET_PATH"]

        augmenter = Augmenter(None)

        dataset = CoILDataset(full_dataset, transform=augmenter)

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.

        # The data loader is the multi threaded module from pytorch that release a number of
        # workers to get all the data.
        # TODO: batch size an number of workers go to some configuration file
        batchsize = 30
        data_loader = torch.utils.data.DataLoader(dataset,
                                                  batch_size=batchsize,
                                                  shuffle=False,
                                                  num_workers=1,
                                                  pin_memory=True)

        # TODO: here there is clearly a posibility to make a cool "conditioning" system.

        if architecture_name == 'coil_unit':
            model_task, model_gen = CoILModel('coil_unit')
            model_task, model_gen = model_task.cuda(), model_gen.cuda()
        else:
            model = CoILModel(architecture_name)
            model.cuda()

        latest = 0

        # print (dataset.meta_data)
        best_loss = 1000
        best_error = 1000
        best_loss_mini = 1000
        best_loss_iter = 0
        best_error_iter = 0
        batch_size = 30
        best_loss_ckpt = ''

        if architecture_name == 'coil_unit':
            ckpts = glob.glob('/home/rohitrishabh/UNIT_DA/outputs/' +
                              exp_alias + '/checkpoints/gen*.pt')
        else:
            ckpts = glob.glob(
                os.path.join(
                    '/home/adas/CleanedCode/CoIL_Codes/coil_20-06/_logs',
                    exp_batch, exp_alias) + '/*.pth')

        if architecture_name == 'coil_unit':
            model_task.eval()
            model_gen.eval()
        else:
            model.eval()
        ckpts = sorted(ckpts)
        # TODO: refactor on the getting on the checkpoint organization needed
        for ckpt in ckpts:

            # if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):

            # latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)
            # ckpt = os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias
            #                         , 'checkpoints', str(latest) + '.pth')
            checkpoint = torch.load(ckpt)
            print("Validation loaded ", ckpt)
            if architecture_name == 'wgangp_lsd':
                print(ckpt, checkpoint['best_loss_iter_F'])
                model.load_state_dict(checkpoint['stateF_dict'])
                model.eval()
            elif architecture_name == 'coil_unit':
                model_task.load_state_dict(checkpoint['task'])
                model_gen.load_state_dict(checkpoint['b'])
                model_task.eval()
                model_gen.eval()
            elif architecture_name == 'coil_icra':
                model.load_state_dict(checkpoint['state_dict'])
                model.eval()

            accumulated_loss = 0
            accumulated_error = 0
            iteration_on_checkpoint = 0
            datacount = 0
            for data in data_loader:

                input_data, float_data = data

                controls = float_data[:, dataset.controls_position(), :]

                camera_angle = float_data[:, 26, :]
                camera_angle = camera_angle.cuda()
                steer = float_data[:, 0, :]
                steer = steer.cuda()
                speed = float_data[:, 10, :]
                speed = speed.cuda()

                time_use = 1.0
                car_length = 3.0
                extra_factor = 2.5
                threshold = 1.0

                pos = camera_angle > 0.0
                pos = pos.type(torch.FloatTensor)
                neg = camera_angle <= 0.0
                neg = neg.type(torch.FloatTensor)
                pos = pos.cuda()
                neg = neg.cuda()

                rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0
                val = extra_factor * (torch.atan(
                    (rad_camera_angle * car_length) /
                    (time_use * speed + 0.05))) / 3.1415
                steer -= pos * torch.min(val, torch.Tensor([0.6]).cuda())
                steer += neg * torch.min(val, torch.Tensor([0.6]).cuda())

                steer = steer.cpu()
                float_data[:, 0, :] = steer
                float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0
                float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0

                datacount += 1
                control_position = 24
                speed_position = 10

                if architecture_name == 'wgangp_lsd':
                    embed, output = model(
                        torch.squeeze(input_data['rgb']).cuda(),
                        float_data[:, speed_position, :].cuda())

                    loss = torch.sum(
                        (output[0] -
                         dataset.extract_targets(float_data).cuda()
                         )**2).data.tolist()
                    mean_error = torch.sum(
                        torch.abs(output[0] -
                                  dataset.extract_targets(float_data).cuda())
                    ).data.tolist()

                elif architecture_name == 'coil_unit':
                    embed, n_b = model_gen.encode(
                        torch.squeeze(input_data['rgb']).cuda())
                    output = model_task(
                        embed,
                        Variable(float_data[:, speed_position, :]).cuda())

                    loss = torch.sum(
                        (output[0].data -
                         dataset.extract_targets(float_data).cuda())**2)
                    mean_error = torch.sum(
                        torch.abs(output[0].data -
                                  dataset.extract_targets(float_data).cuda()))

                elif architecture_name == 'coil_icra':
                    output = model.forward_branch(
                        torch.squeeze(input_data['rgb']).cuda(),
                        float_data[:, speed_position, :].cuda(),
                        float_data[:, control_position, :].cuda())

                    loss = torch.sum(
                        (output - dataset.extract_targets(float_data).cuda()
                         )**2).data.tolist()
                    mean_error = torch.sum(
                        torch.abs(output -
                                  dataset.extract_targets(float_data).cuda())
                    ).data.tolist()

                if loss < best_loss_mini:
                    best_loss_mini = loss

                accumulated_error += mean_error
                accumulated_loss += loss
                # error = torch.abs(output[0] - dataset.extract_targets(float_data).cuda())

                # Log a random position
                position = random.randint(0, len(float_data) - 1)
                iteration_on_checkpoint += 1

            print(datacount, len(data_loader), accumulated_loss)
            checkpoint_average_loss = accumulated_loss / float(
                datacount * batchsize)
            checkpoint_average_error = accumulated_error / float(
                datacount * batchsize)

            if checkpoint_average_loss < best_loss:
                best_loss = checkpoint_average_loss
                best_loss_iter = latest
                best_loss_ckpt = ckpt

            if checkpoint_average_error < best_error:
                best_error = checkpoint_average_error
                best_error_iter = latest

            print("current loss", checkpoint_average_loss)
            print("best_loss", best_loss)

            coil_logger.add_message(
                'Iterating', {
                    'Summary': {
                        'Error': checkpoint_average_error,
                        'Loss': checkpoint_average_loss,
                        'BestError': best_error,
                        'BestLoss': best_loss,
                        'BestLossCheckpoint': best_loss_iter,
                        'BestErrorCheckpoint': best_error_iter
                    },
                    'Checkpoint': latest
                }, latest)
            latest += 2000

        coil_logger.add_message('Finished', {})
        print("Best Validation Loss ckpt:", best_loss_ckpt)

        # TODO: DO ALL THE AMAZING LOGGING HERE, as a way to very the status in paralell.
        # THIS SHOULD BE AN INTERELY PARALLEL PROCESS

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except:
        traceback.print_exc()

        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #14
0
def execute(gpu,
            exp_batch='nocrash',
            exp_alias='resnet34imnet10S1',
            suppress_output=True,
            yaml_file=None):
    latest = None
    # try:
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    # At this point the log file with the correct naming is created.
    path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias + '.yaml')
    if yaml_file is not None:
        path_to_yaml_file = os.path.join(yaml_file, exp_alias + '.yaml')
    merge_with_yaml(path_to_yaml_file)
    # The validation dataset is always fully loaded, so we fix a very high number of hours
    # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code
    """
    # commenting this segment to simplify code, uncomment if necessary
    set_type_of_process('validation', dataset_name)

    if not os.path.exists('_output_logs'):
        os.mkdir('_output_logs')

    if suppress_output:
        sys.stdout = open(os.path.join('_output_logs',
                                       exp_alias + '_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
        sys.stderr = open(os.path.join('_output_logs',
                          exp_alias + '_err_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
    """

    # Define the dataset. This structure is has the __get_item__ redefined in a way
    # that you can access the HDFILES positions from the root directory as a in a vector.

    full_dataset = os.path.join(
        os.environ["COIL_DATASET_PATH"], g_conf.DART_COVMAT_DATA
    )  # dataset used for computing dart covariance matrix

    augmenter = Augmenter(None)

    # Definition of the dataset to be used. Preload name is just the validation data name
    print('full dataset path: ', full_dataset)
    dataset = CoILDataset(full_dataset,
                          transform=augmenter,
                          preload_name=g_conf.DART_COVMAT_DATA
                          )  # specify DART_COVMAT_DATA in the config file

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=g_conf.BATCH_SIZE,
        shuffle=False,
        num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
        pin_memory=True)

    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
    """ removing this segment to simplify code
    # The window used to keep track of the trainings
    l1_window = []
    latest = get_latest_evaluated_checkpoint()
    if latest is not None:  # When latest is noe
        l1_window = coil_logger.recover_loss_window(g_conf.DART_COVMAT_DATA, None)
    """

    model.cuda()

    best_mse = 1000
    best_error = 1000
    best_mse_iter = 0
    best_error_iter = 0

    # modified validation code from here to run a single model checkpoint
    # used for computing the covariance matrix with the DART model checkpoint
    checkpoint = torch.load(
        g_conf.DART_MODEL_CHECKPOINT
    )  # specify DART_MODEL_CHECKPOINT in the config file
    checkpoint_iteration = checkpoint['iteration']
    print("Validation loaded ", checkpoint_iteration)
    model.load_state_dict(checkpoint['state_dict'])

    model.eval()
    accumulated_mse = 0
    accumulated_error = 0
    iteration_on_checkpoint = 0

    # considering steer, throttle & brake so 3x3 matrix
    normalized_covariate_shift = torch.zeros(3, 3)

    print('data_loader size: ', len(data_loader))
    for data in data_loader:

        # Compute the forward pass on a batch from the validation dataset
        controls = data['directions']
        output = model.forward_branch(
            torch.squeeze(data['rgb']).cuda(),
            dataset.extract_inputs(data).cuda(), controls)
        """ removing this segment to simplify code
        # It could be either waypoints or direct control
        if 'waypoint1_angle' in g_conf.TARGETS:
            write_waypoints_output(checkpoint_iteration, output)
        else:
            write_regular_output(checkpoint_iteration, output)
        """

        mse = torch.mean(
            (output - dataset.extract_targets(data).cuda())**2).data.tolist()
        mean_error = torch.mean(
            torch.abs(output -
                      dataset.extract_targets(data).cuda())).data.tolist()

        accumulated_error += mean_error
        accumulated_mse += mse
        error = torch.abs(output -
                          dataset.extract_targets(data).cuda()).data.cpu()

        ### covariate shift segment starts
        error = error.unsqueeze(dim=2)
        error_transpose = torch.transpose(error, 1, 2)
        # compute covariate shift
        covariate_shift = torch.matmul(error, error_transpose)
        # expand traj length tensor to Bx3x3 (considering steer, throttle & brake)
        traj_lengths = torch.stack([
            torch.stack([data['current_traj_length'].squeeze(dim=1)] * 3,
                        dim=1)
        ] * 3,
                                   dim=2)
        covariate_shift = covariate_shift / traj_lengths
        covariate_shift = torch.sum(covariate_shift, dim=0)
        # print ('current covariate shift: ', covariate_shift.shape)

        normalized_covariate_shift += covariate_shift
        ### covariate shift segment ends

        total_episodes = data['episode_count'][-1].data
        iteration_on_checkpoint += 1
        if iteration_on_checkpoint % 50 == 0:
            print('iteration: ', iteration_on_checkpoint)

    print('total episodes: ', total_episodes)
    normalized_covariate_shift = normalized_covariate_shift / total_episodes
    print('normalized covariate shift: ', normalized_covariate_shift.shape,
          normalized_covariate_shift)

    # save the matrix to restart directly from the mat file
    # np.save(os.path.join(g_conf.COVARIANCE_MATRIX_PATH, 'covariance_matrix_%s.npy'%g_conf.DART_COVMATH_DATA), normalized_covariate_shift)
    return normalized_covariate_shift.numpy()
    '''
Example #15
0
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output):
    latest = None
    try:
        # We set the visible cuda devices
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        # At this point the log file with the correct naming is created.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        # The validation dataset is always fully loaded, so we fix a very high number of hours
        g_conf.NUMBER_OF_HOURS = 10000
        set_type_of_process('validation', dataset_name)

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the HDFILES positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    dataset_name)
        augmenter = Augmenter(None)
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=dataset_name)

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.

        # The data loader is the multi threaded module from pytorch that release a number of
        # workers to get all the data.
        data_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=g_conf.BATCH_SIZE,
            shuffle=False,
            num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
            pin_memory=True)

        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)

        # Set ERFnet for segmentation
        model_erf = ERFNet(20)
        model_erf = torch.nn.DataParallel(model_erf)
        model_erf = model_erf.cuda()

        print("LOAD ERFNet - validate")

        def load_my_state_dict(
            model, state_dict
        ):  #custom function to load model when not all dict elements
            own_state = model.state_dict()
            for name, param in state_dict.items():
                if name not in own_state:
                    continue
                own_state[name].copy_(param)
            return model

        model_erf = load_my_state_dict(
            model_erf,
            torch.load(os.path.join('trained_models/erfnet_pretrained.pth')))
        model_erf.eval()
        print("ERFNet and weights LOADED successfully")

        # The window used to keep track of the trainings
        l1_window = []
        latest = get_latest_evaluated_checkpoint()
        if latest is not None:  # When latest is noe
            l1_window = coil_logger.recover_loss_window(dataset_name, None)

        model.cuda()

        best_mse = 1000
        best_error = 1000
        best_mse_iter = 0
        best_error_iter = 0

        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):

            if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):

                latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)

                checkpoint = torch.load(
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(latest) + '.pth'))
                checkpoint_iteration = checkpoint['iteration']
                print("Validation loaded ", checkpoint_iteration)

                model.load_state_dict(checkpoint['state_dict'])

                model.eval()
                accumulated_mse = 0
                accumulated_error = 0
                iteration_on_checkpoint = 0
                for data in data_loader:

                    # Compute the forward pass on a batch from  the validation dataset
                    controls = data['directions']

                    # Seg batch
                    rgbs = data['rgb']
                    with torch.no_grad():
                        outputs = model_erf(rgbs)
                    labels = outputs.max(1)[1].byte().cpu().data

                    seg_road = (labels == 0)
                    seg_not_road = (labels != 0)
                    seg = torch.stack((seg_road, seg_not_road), 1).float()

                    output = model.forward_branch(
                        torch.squeeze(seg).cuda(),
                        dataset.extract_inputs(data).cuda(), controls)

                    #                    output = model.foward_branch(torch.squeeze(rgbs).cuda(),
                    #                                                 dataset.extract_inputs(data).cuda(),controls)
                    # It could be either waypoints or direct control
                    if 'waypoint1_angle' in g_conf.TARGETS:
                        write_waypoints_output(checkpoint_iteration, output)
                    else:
                        write_regular_output(checkpoint_iteration, output)

                    mse = torch.mean(
                        (output - dataset.extract_targets(data).cuda()
                         )**2).data.tolist()
                    mean_error = torch.mean(
                        torch.abs(output -
                                  dataset.extract_targets(data).cuda())
                    ).data.tolist()

                    accumulated_error += mean_error
                    accumulated_mse += mse
                    error = torch.abs(output -
                                      dataset.extract_targets(data).cuda())

                    # Log a random position
                    position = random.randint(0, len(output.data.tolist()) - 1)

                    coil_logger.add_message(
                        'Iterating', {
                            'Checkpoint':
                            latest,
                            'Iteration': (str(iteration_on_checkpoint * 120) +
                                          '/' + str(len(dataset))),
                            'MeanError':
                            mean_error,
                            'MSE':
                            mse,
                            'Output':
                            output[position].data.tolist(),
                            'GroundTruth':
                            dataset.extract_targets(
                                data)[position].data.tolist(),
                            'Error':
                            error[position].data.tolist(),
                            'Inputs':
                            dataset.extract_inputs(data)
                            [position].data.tolist()
                        }, latest)
                    iteration_on_checkpoint += 1
                    print("Iteration %d  on Checkpoint %d : Error %f" %
                          (iteration_on_checkpoint, checkpoint_iteration,
                           mean_error))
                """
                    ########
                    Finish a round of validation, write results, wait for the next
                    ########
                """

                checkpoint_average_mse = accumulated_mse / (len(data_loader))
                checkpoint_average_error = accumulated_error / (
                    len(data_loader))
                coil_logger.add_scalar('Loss', checkpoint_average_mse, latest,
                                       True)
                coil_logger.add_scalar('Error', checkpoint_average_error,
                                       latest, True)

                if checkpoint_average_mse < best_mse:
                    best_mse = checkpoint_average_mse
                    best_mse_iter = latest

                if checkpoint_average_error < best_error:
                    best_error = checkpoint_average_error
                    best_error_iter = latest

                coil_logger.add_message(
                    'Iterating', {
                        'Summary': {
                            'Error': checkpoint_average_error,
                            'Loss': checkpoint_average_mse,
                            'BestError': best_error,
                            'BestMSE': best_mse,
                            'BestMSECheckpoint': best_mse_iter,
                            'BestErrorCheckpoint': best_error_iter
                        },
                        'Checkpoint': latest
                    }, latest)

                l1_window.append(checkpoint_average_error)
                coil_logger.write_on_error_csv(dataset_name,
                                               checkpoint_average_error)

                # If we are using the finish when validation stops, we check the current
                if g_conf.FINISH_ON_VALIDATION_STALE is not None:
                    if dlib.count_steps_without_decrease(l1_window) > 3 and \
                            dlib.count_steps_without_decrease_robust(l1_window) > 3:
                        coil_logger.write_stop(dataset_name, latest)
                        break

            else:

                latest = get_latest_evaluated_checkpoint()
                time.sleep(1)

                coil_logger.add_message('Loading',
                                        {'Message': 'Waiting Checkpoint'})
                print("Waiting for the next Validation")

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)

    except RuntimeError as e:
        if latest is not None:
            coil_logger.erase_csv(latest)
        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
        # We erase the output that was unfinished due to some process stop.
        if latest is not None:
            coil_logger.erase_csv(latest)
Example #16
0
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' +
                              g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a",
                              buffering=1)
            sys.stderr = open(os.path.join('_output_logs',
                              exp_alias + '_err_'+g_conf.PROCESS_NAME + '_'
                                           + str(os.getpid()) + ".out"),
                              "a", buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                                                  g_conf.PRELOAD_MODEL_ALIAS,
                                                 'checkpoints',
                                                 str(g_conf.PRELOAD_MODEL_CHECKPOINT)+'.pth'))


        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias,
                                    'checkpoints', str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0


        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset, transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS)
                                               + 'hours_' + g_conf.TRAIN_DATASET_NAME)
        print ("Loaded dataset")

        data_loader = select_balancing_strategy(dataset, iteration, number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)
        

        # Set ERFnet for segmentation
        model_erf = ERFNet(20)
        model_erf = torch.nn.DataParallel(model_erf)
        model_erf = model_erf.cuda()        
        
        print("LOAD ERFNet")
        def load_my_state_dict(model, state_dict):  #custom function to load model when not all dict elements
            own_state = model.state_dict()
            for name, param in state_dict.items():
                if name not in own_state:
                    continue
                own_state[name].copy_(param)
            return model
        
        model_erf = load_my_state_dict(model_erf, torch.load(os.path.join('trained_models/erfnet_pretrained.pth')))
        model_erf.eval()
        print ("ERFNet and weights LOADED successfully")

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []
       

        print ("Before the loss")

        criterion = Loss(g_conf.LOSS_FUNCTION)

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # get the control commands from float_data, size = [120,1]

            capture_time = time.time()
            controls = data['directions']
            # The output(branches) is a list of 5 branches results, each branch is with size [120,3]
            model.zero_grad()

            # print("Segmentation")
            # use ERFNet to convert RGB to Segmentation
            rgbs = data['rgb']
            filenames = data['rgb_name']

            # # seg one by one
            # seg_road = []
            # seg_not_road = []
            # i = 0
            # for inputs in rgbs:
            #     inputs = inputs.unsqueeze(0)
            #     # print("inputs ",inputs.shape)
            #     with torch.no_grad():
            #         outputs = model_erf(inputs)

            #     label = outputs[0].max(0)[1].byte().cpu().data

            #     road = (label == 0)
            #     not_road = (label != 0)
            #     seg_road.append(road)
            #     seg_not_road.append(not_road)   

            #     # # print("label ",label.shape)
            #     # label_color = Colorize()(label.unsqueeze(0))
            #     # filename = filenames[i]                
            #     # filenameSave = "./save_color/" + filename.split("CoILTrain/")[1]
            #     # os.makedirs(os.path.dirname(filenameSave), exist_ok=True)
                   
            #     # label_save = ToPILImage()(label_color)           
            #     # label_save.save(filenameSave) 
            #     # # print (i, filenameSave)
            #     # i += 1                 

            # seg_road = torch.stack(seg_road)
            # seg_not_road = torch.stack(seg_not_road)
            # seg = torch.stack([seg_road,seg_not_road]).transpose(0,1).float()
            # # print(seg.shape)
            
            # seg batch
            with torch.no_grad():
                outputs = model_erf(rgbs)
            # print("outputs.shape ",outputs.shape)
            labels = outputs.max(1)[1].byte().cpu().data
            # print("labels.shape",labels.shape)
            # print(np.unique(labels[0])) 

            seg_road = (labels==0)
            seg_not_road = (labels!=0)
            seg = torch.stack((seg_road,seg_not_road),1).float()

            # save 1st batch's segmentation results
            if iteration == 1:
                for i in range(120):
                    label = seg[i,0,:,:]
                    label_color = Colorize()(label.unsqueeze(0))               
                    filenameSave = "./save_color/batch_road_mask/%d.png"%(i)
                    os.makedirs(os.path.dirname(filenameSave), exist_ok=True)                   
                    label_save = ToPILImage()(label_color)           
                    label_save.save(filenameSave)

                    label = labels[i,:,:]
                    label_color = Colorize()(label.unsqueeze(0))               
                    filenameSave = "./save_color/batch_road/%d.png"%(i)
                    os.makedirs(os.path.dirname(filenameSave), exist_ok=True)                   
                    label_save = ToPILImage()(label_color)           
                    label_save.save(filenameSave)


            branches = model(torch.squeeze(seg).cuda(),
                             dataset.extract_inputs(data).cuda())
#             branches = model(torch.squeeze(rgbs.cuda()),
#                              dataset.extract_input(data).cuda())

            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(state, os.path.join('_logs', exp_batch, exp_alias
                                               , 'checkpoints', str(iteration) + '.pth'))

            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message('Iterating',
                                    {'Iteration': iteration,
                                     'Loss': loss.data.tolist(),
                                     'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                                     'BestLoss': best_loss, 'BestLossIteration': best_loss_iter,
                                     'Output': output[position].data.tolist(),
                                     'GroundTruth': dataset.extract_targets(data)[
                                         position].data.tolist(),
                                     'Error': error[position].data.tolist(),
                                     'Inputs': dataset.extract_inputs(data)[
                                         position].data.tolist()},
                                    iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #17
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12,
            encoder_params=None):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(
            os.path.join('configs', exp_batch, exp_alias + '.yaml'),
            encoder_params)
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading',
                                {'GPU': os.environ["CUDA_VISIBLE_DEVICES"]})

        seed_everything(seed=g_conf.MAGICAL_SEED)

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        print(" GOING TO LOAD")
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            print(" LOADING A PRELOAD")
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        else:

            # Get the latest checkpoint to be loaded
            # returns none if there are no checkpoints saved for this model
            checkpoint_file = get_latest_saved_checkpoint()
            if checkpoint_file is not None:
                print('loading previous checkpoint ', checkpoint_file)
                checkpoint = torch.load(
                    os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                 g_conf.EXPERIMENT_NAME, 'checkpoints',
                                 str(get_latest_saved_checkpoint())))
                iteration = checkpoint['iteration']
                best_loss = checkpoint['best_loss']
                best_loss_iter = checkpoint['best_loss_iter']
            else:
                iteration = 0
                best_loss = 100000000.0
                best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        #full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # We can save preload dataset depends on the json file name, then no need to load dataset for each time with the same dataset
        if len(g_conf.EXPERIENCE_FILE) == 1:
            json_file_name = str(
                g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2]
        else:
            json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split(
                '/')[-1].split('.')[-2] + '_' + str(
                    g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2]
        dataset = CoILDataset(transform=augmenter,
                              preload_name=g_conf.PROCESS_NAME + '_' +
                              json_file_name + '_' + g_conf.DATA_USED)

        #dataset = CoILDataset(transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS)+ 'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded Training dataset")

        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        if g_conf.MODEL_TYPE in ['separate-affordances']:
            model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION,
                              g_conf.ENCODER_MODEL_CONFIGURATION)

        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        print(model)

        # we use the pre-trained encoder model to extract bottleneck Z and train the E-t-E model

        if g_conf.MODEL_TYPE in ['separate-affordances']:
            encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE,
                                         g_conf.ENCODER_MODEL_CONFIGURATION)
            encoder_model.cuda()
            encoder_model.eval()
            # To freeze the pre-trained encoder model
            if g_conf.FREEZE_ENCODER:
                for param_ in encoder_model.parameters():
                    param_.requires_grad = False
            if encoder_params is not None:
                encoder_checkpoint = torch.load(
                    os.path.join(
                        '_logs', encoder_params['encoder_folder'],
                        encoder_params['encoder_exp'], 'checkpoints',
                        str(encoder_params['encoder_checkpoint']) + '.pth'))
                print(
                    "Encoder model ",
                    str(encoder_params['encoder_checkpoint']), "loaded from ",
                    os.path.join('_logs', encoder_params['encoder_folder'],
                                 encoder_params['encoder_exp'], 'checkpoints'))
                encoder_model.load_state_dict(encoder_checkpoint['state_dict'])
                if g_conf.FREEZE_ENCODER:
                    encoder_model.eval()
                    # To freeze the pre-trained encoder model
                    for param_ in encoder_model.parameters():
                        param_.requires_grad = False
                else:
                    optimizer = optim.Adam(list(model.parameters()) +
                                           list(encoder_model.parameters()),
                                           lr=g_conf.LEARNING_RATE)

            for name_encoder, param_encoder in encoder_model.named_parameters(
            ):
                if param_encoder.requires_grad:
                    print('  Unfrozen layers', name_encoder)
                else:
                    print('  Frozen layers', name_encoder)

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        for name, param in model.named_parameters():
            if param.requires_grad:
                print('  Unfrozen layers', name)
            else:
                print('  Frozen layers', name)

        print("Before the loss")

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            model.zero_grad()
            if not g_conf.FREEZE_ENCODER:
                encoder_model.zero_grad()

            if g_conf.LABELS_SUPERVISED:
                inputs_data = torch.cat(
                    (data['rgb'], torch.zeros(g_conf.BATCH_SIZE, 1, 88, 200)),
                    dim=1).cuda()
            else:
                inputs_data = torch.squeeze(data['rgb'].cuda())

            if g_conf.MODEL_TYPE in ['separate-affordances']:
                #TODO: for this two encoder models training, we haven't put speed as input to train yet

                if g_conf.ENCODER_MODEL_TYPE in [
                        'action_prediction', 'stdim', 'forward',
                        'one-step-affordances'
                ]:

                    e, inter = encoder_model.forward_encoder(
                        inputs_data,
                        dataset.extract_inputs(data).cuda(),
                        # We also add measurements and commands
                        torch.squeeze(dataset.extract_commands(data).cuda()))

                elif g_conf.ENCODER_MODEL_TYPE in ['ETE']:
                    e, inter = encoder_model.forward_encoder(
                        inputs_data,
                        dataset.extract_inputs(data).cuda(),
                        torch.squeeze(dataset.extract_commands(data).cuda()))

                loss_function_params = {
                    'classification_gt':
                    dataset.extract_affordances_targets(
                        data, 'classification').cuda(),
                    # harzard stop, red_light....
                    'class_weights':
                    g_conf.AFFORDANCES_CLASS_WEIGHT,
                    'regression_gt':
                    dataset.extract_affordances_targets(data,
                                                        'regression').cuda(),
                    'variable_weights':
                    g_conf.AFFORDANCES_VARIABLE_WEIGHT
                }
                loss = model(e, loss_function_params)
                loss.backward()
                optimizer.step()

            else:
                raise RuntimeError(
                    'Not implement yet, this branch is only work for g_conf.MODEL_TYPE in [separate-affordances]'
                )
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                 g_conf.EXPERIMENT_NAME, 'checkpoints',
                                 str(iteration) + '.pth'))

                if not g_conf.FREEZE_ENCODER:
                    encoder_state = {
                        'iteration': iteration,
                        'state_dict': encoder_model.state_dict(),
                        'best_loss': best_loss,
                        'total_time': accumulated_time,
                        'optimizer': optimizer.state_dict(),
                        'best_loss_iter': best_loss_iter
                    }
                    torch.save(
                        encoder_state,
                        os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                     g_conf.EXPERIMENT_NAME, 'checkpoints',
                                     str(iteration) + '_encoder.pth'))

            iteration += 1
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)

            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            if iteration % 100 == 0:
                print('Train Iteration: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}'.
                      format(iteration, iteration, g_conf.NUMBER_ITERATIONS,
                             100. * iteration / g_conf.NUMBER_ITERATIONS,
                             loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #18
0
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output=True, yaml_file=None):
    latest = None
    # try:
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    # At this point the log file with the correct naming is created.
    path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias+'.yaml')
    if yaml_file is not None:
      path_to_yaml_file = os.path.join(yaml_file, exp_alias+'.yaml')
    merge_with_yaml(path_to_yaml_file)
    # The validation dataset is always fully loaded, so we fix a very high number of hours
    # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code
    
    """
    # check again if this segment is required or not
    set_type_of_process('validation', dataset_name)

    if not os.path.exists('_output_logs'):
        os.mkdir('_output_logs')

    if suppress_output:
        sys.stdout = open(os.path.join('_output_logs',
                                       exp_alias + '_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
        sys.stderr = open(os.path.join('_output_logs',
                          exp_alias + '_err_' + g_conf.PROCESS_NAME + '_'
                                       + str(os.getpid()) + ".out"),
                          "a", buffering=1)
    """

    # Define the dataset. This structure is has the __get_item__ redefined in a way
    # that you can access the HDFILES positions from the root directory as a in a vector.
    
    dataset_name = dataset_name.split('_')[-1] # since preload file has '<X>hours_' as prefix whereas dataset folder does not
    full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) # original code
    augmenter = Augmenter(None)

    print ('full dataset path: ', full_dataset)
    dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=args.dataset_name)

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(dataset, batch_size=g_conf.BATCH_SIZE,
                                              shuffle=False,
                                              num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
                                              pin_memory=True)

    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)

    """ removing this segment to simplify code
    # The window used to keep track of the trainings
    l1_window = []
    latest = get_latest_evaluated_checkpoint()
    if latest is not None:  # When latest is noe
        l1_window = coil_logger.recover_loss_window(dataset_name, None)
    """
    
    model.cuda()

    best_mse = 1000
    best_error = 1000
    best_mse_iter = 0
    best_error_iter = 0

    # modified validation code from here to run a single model
    checkpoint = torch.load(args.checkpoint)
    checkpoint_iteration = checkpoint['iteration']
    print("model loaded ", checkpoint_iteration)

    model.load_state_dict(checkpoint['state_dict'])

    model.eval()
    accumulated_mse = 0
    accumulated_error = 0
    iteration_on_checkpoint = 0

    print ('data_loader size: ', len(data_loader))
    total_error = []
    for data in data_loader:

        # Compute the forward pass on a batch from the loaded dataset
        controls = data['directions']
        branches = model(torch.squeeze(data['rgb'].cuda()),
                             dataset.extract_inputs(data).cuda())
        output = model.extract_branch(torch.stack(branches[0:4]), controls)
        error = torch.abs(output - dataset.extract_targets(data).cuda())
        total_error += error.detach().cpu().tolist()
        
        iteration_on_checkpoint += 1
        if iteration_on_checkpoint % 50 == 0:
            print ('iteration: ', iteration_on_checkpoint)

    total_error = np.array(total_error)
    print (len(total_error), total_error.shape)

    np.save(os.path.join(args.save_path, args.dataset_name, 'computed_error.npy'), total_error)
    '''
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12):
    """
        The main encoder training function.
    Args:
        gpu: The GPU id number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading
    Returns:
        None
    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'))
        set_type_of_process('train_encoder')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': os.environ["CUDA_VISIBLE_DEVICES"]})

        # we set a seed for this exp
        seed_everything(seed=g_conf.MAGICAL_SEED)

        # Put the output to a separate file if it is the case
        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' +
                                           g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a",
                              buffering=1)
            sys.stderr = open(os.path.join('_output_logs',
                                           exp_alias + '_err_' + g_conf.PROCESS_NAME + '_'
                                           + str(os.getpid()) + ".out"),
                              "a", buffering=1)

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                                                 g_conf.PRELOAD_MODEL_ALIAS,
                                                 'checkpoints',
                                                 str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias,
                                                 'checkpoints', str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 1000000000.0
            best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        # full_dataset = os.path.join(os.environ["SRL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        if len(g_conf.EXPERIENCE_FILE) == 1:
            json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2]
        else:
            json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] + '_' + str(g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2]

        dataset = CoILDataset(transform=augmenter,
                              preload_name=g_conf.PROCESS_NAME + '_' + json_file_name + '_' + g_conf.DATA_USED)

        print ("Loaded dataset")

        data_loader = select_balancing_strategy(dataset, iteration, number_of_workers)

        encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION)
        encoder_model.cuda()
        encoder_model.train()

        print(encoder_model)

        optimizer = optim.Adam(encoder_model.parameters(), lr=g_conf.LEARNING_RATE)

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            encoder_model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        print ("Before the loss")

        if g_conf.ENCODER_MODEL_TYPE in ['ETE']:
            criterion = Loss(g_conf.LOSS_FUNCTION)

        # Loss time series window
        for data in data_loader:
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            capture_time = time.time()
            encoder_model.zero_grad()

            """
                ####################################
                    ENCODER_MODEL_TYPE can be: one-step-affordances, ETE, stdim, action_prediction
                    
                ####################################
              - one-step-affordances: input RGB images, compute affordances loss.
              - ETE: input RGB images and speed, compute action loss (steering, throttle, brake)
              - stdim: input two consecutive RGB images, compute the feature loss
              - action_prediction: input two consecutive RGB images, compute action classification loss
              - forward: input two consecutive RGB images, compute action loss + feature loss
              
            """

            if g_conf.ENCODER_MODEL_TYPE in ['one-step-affordances']:
                loss_function_params = {
                    'classification_gt': dataset.extract_affordances_targets(data, 'classification').cuda(),
                # harzard stop, red_light....
                    'class_weights': g_conf.AFFORDANCES_CLASS_WEIGHT,
                    'regression_gt': dataset.extract_affordances_targets(data, 'regression').cuda(),
                    'variable_weights': g_conf.AFFORDANCES_VARIABLE_WEIGHT
                }
                # we input RGB images, speed and command to train affordances
                loss = encoder_model(torch.squeeze(data['rgb'].cuda()),
                                     dataset.extract_inputs(data).cuda(),
                                     torch.squeeze(dataset.extract_commands(data).cuda()),
                                     loss_function_params)

                if iteration == 0:
                    state = {
                        'iteration': iteration,
                        'state_dict': encoder_model.state_dict(),
                        'best_loss': best_loss,
                        'total_time': accumulated_time,
                        'optimizer': optimizer.state_dict(),
                        'best_loss_iter': best_loss_iter
                    }
                    torch.save(state, os.path.join('_logs', exp_batch, exp_alias
                                                   , 'checkpoints', 'inital.pth'))

                loss.backward()
                optimizer.step()

            elif g_conf.ENCODER_MODEL_TYPE in ['forward']:
                # We sample another batch to avoid the superposition

                inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()]
                loss, loss_other, loss_ete = encoder_model(inputs_data,
                                           dataset.extract_inputs(data),
                                           # We also add measurements and commands
                                           dataset.extract_commands(data),
                                           dataset.extract_targets(data)[0].cuda()
                                           )
                loss.backward()
                optimizer.step()


            elif g_conf.ENCODER_MODEL_TYPE in ['ETE']:
                branches = encoder_model(torch.squeeze(data['rgb'].cuda()),
                                         dataset.extract_inputs(data).cuda(),
                                         torch.squeeze(dataset.extract_commands(data).cuda()))

                loss_function_params = {
                    'branches': branches,
                    'targets': dataset.extract_targets(data).cuda(),  # steer, throttle, brake
                    'inputs': dataset.extract_inputs(data).cuda(),  # speed
                    'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                    'variable_weights': g_conf.VARIABLE_WEIGHT
                }

                loss, _ = criterion(loss_function_params)
                loss.backward()
                optimizer.step()

            elif g_conf.ENCODER_MODEL_TYPE in ['stdim']:
                inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()]
                loss, _, _ = encoder_model(inputs_data,
                                           dataset.extract_inputs(data),
                                           # We also add measurements and commands
                                           dataset.extract_commands(data)
                                           )
                loss.backward()
                optimizer.step()

            elif g_conf.ENCODER_MODEL_TYPE in ['action_prediction']:
                inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()]
                loss, _, _ = encoder_model(inputs_data,
                                           dataset.extract_inputs(data),
                                           # We also add measurements and commands
                                           dataset.extract_commands(data),
                                           dataset.extract_targets(data)[0].cuda()
                                           )
                loss.backward()
                optimizer.step()

            else:
                raise ValueError("The encoder model type is not know")

            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):
                state = {
                    'iteration': iteration,
                    'state_dict': encoder_model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(state, os.path.join('_logs', exp_batch, exp_alias
                                               , 'checkpoints', str(iteration) + '.pth'))

            iteration += 1

            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """

            if g_conf.ENCODER_MODEL_TYPE in ['stdim', 'action_prediction', 'forward']:
                coil_logger.add_scalar('Loss', loss.data, iteration)
                coil_logger.add_image('f_t', torch.squeeze(data['rgb'][0]), iteration)
                coil_logger.add_image('f_ti', torch.squeeze(data['rgb'][1]), iteration)

            elif g_conf.ENCODER_MODEL_TYPE in ['one-step-affordances', 'ETE']:
                coil_logger.add_scalar('Loss', loss.data, iteration)
                coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration)

            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            accumulated_time += time.time() - capture_time
            coil_logger.add_message('Iterating',
                                    {'Iteration': iteration,
                                     'Loss': loss.data.tolist(),
                                     'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                                     'BestLoss': best_loss, 'BestLossIteration': best_loss_iter},
                                    iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)

            if iteration % 100 == 0:
                print('Train Iteration: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}'.format(
                    iteration, iteration, g_conf.NUMBER_ITERATIONS,
                    100. * iteration / g_conf.NUMBER_ITERATIONS, loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Example #20
0
def execute(gpu, exp_batch, exp_alias, suppress_output=True):
    # We set the visible cuda devices

    # TODO: probable race condition, the train has to be started before.
    try:
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        # At this point the log file with the correct naming is created.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')

        coil_logger.add_message('Loading', {'GPU': gpu})

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        # Put the output to a separate file
        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs',
                g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']

        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # TODO: The checkpoint will continue, so it should erase everything up to the iteration on tensorboard
        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the HD_FILES positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    g_conf.TRAIN_DATASET_NAME)

        # augmenter_cpu = iag.AugmenterCPU(g_conf.AUGMENTATION_SUITE_CPU)

        # By instanciating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        dataset = CoILDataset(full_dataset, transform=augmenter)

        data_loader = select_balancing_strategy(dataset, iteration)

        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()

        if checkpoint_file is not None:
            model.load_state_dict(checkpoint['state_dict'])

        print(model)

        criterion = Loss(g_conf.LOSS_FUNCTION)

        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        print(dataset.meta_data)

        print(model)
        if checkpoint_file is not None:
            accumulated_time = checkpoint['total_time']
        else:
            accumulated_time = 0  # We accumulate iteration time and keep the average speed

        #TODO: test experiment continuation. Is the data sampler going to continue were it started.. ?
        capture_time = time.time()
        for data in data_loader:

            input_data, float_data = data

            # get the control commands from float_data, size = [120,1]

            controls = float_data[:, dataset.controls_position(), :]

            # The output(branches) is a list of 5 branches results, each branch is with size [120,3]

            model.zero_grad()

            branches = model(torch.squeeze(input_data['rgb'].cuda()),
                             dataset.extract_inputs(float_data).cuda())

            loss = criterion(branches,
                             dataset.extract_targets(float_data).cuda(),
                             controls.cuda(),
                             dataset.extract_inputs(float_data).cuda(),
                             branch_weights=g_conf.BRANCH_LOSS_WEIGHT,
                             variable_weights=g_conf.VARIABLE_WEIGHT)

            # TODO: All these logging things could go out to clean up the main
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(float_data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output -
                              dataset.extract_targets(float_data).cuda())

            # TODO: For now we are computing the error for just the correct branch, it could be multi- branch,

            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(input_data['rgb']),
                                  iteration)

            loss.backward()
            optimizer.step()

            accumulated_time += time.time() - capture_time
            capture_time = time.time()

            # TODO: Get only the  float_data that are actually generating output
            # TODO: itearation is repeating , and that is dumb
            coil_logger.add_message(
                'Iterating', {
                    'Iteration':
                    iteration,
                    'Loss':
                    loss.data.tolist(),
                    'Images/s':
                    (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                    'BestLoss':
                    best_loss,
                    'BestLossIteration':
                    best_loss_iter,
                    'Output':
                    output[position].data.tolist(),
                    'GroundTruth':
                    dataset.extract_targets(
                        float_data)[position].data.tolist(),
                    'Error':
                    error[position].data.tolist(),
                    'Inputs':
                    dataset.extract_inputs(float_data)[position].data.tolist()
                }, iteration)

            # TODO: For now we are computing the error for just the correct branch, it could be multi-branch,

            # TODO: save also the optimizer state dictionary
            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'best_loss_iter': best_loss_iter
                }
                # TODO : maybe already summarize the best model ???
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))

            iteration += 1
            print(iteration)

            if iteration % 1000 == 0:
                adjust_learning_rate(optimizer, iteration)

            del data

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except:
        traceback.print_exc()

        coil_logger.add_message('Error', {'Message': 'Something Happened'})