print(__file__.split("/")[-1], "train data:") print(__file__.split("/")[-1], intrain_all_data1.shape) print(__file__.split("/")[-1], intrain_all_label.shape) print(__file__.split("/")[-1], intrain_all_label[0:15]) print(__file__.split("/")[-1], "test data:") print(__file__.split("/")[-1], intest_all_data1.shape) print(__file__.split("/")[-1], intest_all_label.shape) print(__file__.split("/")[-1], intest_all_label[0:15]) train_size = intrain_all_data1.shape[0] test_size = intest_all_data1.shape[0] assert (intrain_all_data1.shape[0] > 0) assert (intrain_all_data1.shape[0] == intrain_all_label.shape[0]) assert (intest_all_data1.shape[0] > 0) assert (intest_all_data1.shape[0] == intest_all_label.shape[0]) trainFeed = FeedInput([intrain_all_data1, intrain_all_label], batch_size) trainFeed.shuffle_all() testFeed = FeedInput([intest_all_data1, intest_all_label], batch_size) testFeed.shuffle_all() num_batches = trainFeed.get_num_batches() print("num_batches per epoch", num_batches) ## -------------------------- data feed finish ----------------------------- init_lr = get_conf_float(conf, "init_lr") end_lr = get_conf_float(conf, "end_lr") nepoch = get_conf_int(conf, "nepoch") total_steps = nepoch * num_batches decay_steps = num_batches / 4.0 weight_decay_rate = (end_lr / init_lr)**(decay_steps / total_steps) lg.lg_list(["init_lr=", init_lr])
print(__file__.split("/")[-1], "train data:", [ind]) print(__file__.split("/")[-1], intrain_all_data1.shape) print(__file__.split("/")[-1], intrain_all_label.shape) print(__file__.split("/")[-1], intrain_all_label[0:15]) print(__file__.split("/")[-1], "test data:", [ind]) print(__file__.split("/")[-1], intest_all_data1.shape) print(__file__.split("/")[-1], intest_all_label.shape) print(__file__.split("/")[-1], intest_all_label[0:15]) test_size[ind] = intest_all_data1.shape[0] assert (intrain_all_data1.shape[0] > 0) assert (intrain_all_data1.shape[0] == intrain_all_label.shape[0]) assert (intest_all_data1.shape[0] > 0) assert (intest_all_data1.shape[0] == intest_all_label.shape[0]) trainFeed[ind] = FeedInput([intrain_all_data1, intrain_all_label], batch_size) trainFeed[ind].shuffle_all() testFeed[ind] = FeedInput([intest_all_data1, intest_all_label], batch_size) testFeed[ind].shuffle_all() tmp = trainFeed[ind].get_num_batches() if tmp > num_batches: num_batches = tmp max_feed_ind = ind print("num_batches per epoch", num_batches) if iprint: print("test_size", test_size) test_size = max(test_size.values()) if iprint: print("test_size", test_size) ## -------------------------- data feed finish -----------------------------
print(__file__.split("/")[-1],"train data:") print(__file__.split("/")[-1], intrain_all_data1.shape) print(__file__.split("/")[-1], intrain_all_label.shape) print(__file__.split("/")[-1], intrain_all_label[0:15]) print(__file__.split("/")[-1],"test data:") print(__file__.split("/")[-1], intest_all_data1.shape) print(__file__.split("/")[-1], intest_all_label.shape) print(__file__.split("/")[-1], intest_all_label[0:15]) train_size = intrain_all_data1.shape[0] test_size = intest_all_data1.shape[0] assert(intrain_all_data1.shape[0]>0) assert(intrain_all_data1.shape[0]==intrain_all_label.shape[0]) assert(intest_all_data1.shape[0]>0) assert(intest_all_data1.shape[0]==intest_all_label.shape[0]) trainFeed = FeedInput([intrain_all_data1, intrain_all_label],batch_size) trainFeed.shuffle_all() testFeed = FeedInput([intest_all_data1, intest_all_label],batch_size) testFeed.shuffle_all() num_batches = trainFeed.get_num_batches() print("num_batches per epoch",num_batches) ## -------------------------- data feed finish ----------------------------- init_lr = get_conf_float(conf,"init_lr") end_lr = get_conf_float(conf,"end_lr") nepoch = get_conf_int(conf,"nepoch") total_steps = nepoch*num_batches decay_steps = num_batches/4.0 weight_decay_rate = (end_lr/init_lr)**(decay_steps/total_steps)