def train():
    if not os.path.exists(tfrecord_path):
        para, faultcode = input_data.get_data(data_path)
        tfrecord_manager.create_tfrecord(para, faultcode, tfrecord_path)

    para_batch, faultcode_batch = tfrecord_manager.read_tfrecord(tfrecord_path, BATCH_SIZE, CAPACITY, NUM_THREADS)

    p_data = para_batch
    fc_data = faultcode_batch

    l1 = addLayer(p_data, 100, 40, activate_function=tf.nn.relu)  # layer1: 100 x 40
    l2 = addLayer(l1, 40, 887, activate_function=None)  # layer2: 40 x 887

    # train_loss = tf.reduce_mean(tf.reduce_sum(tf.square((y_data - l2)), reduction_indices=[0]))
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=l2, labels=fc_data)
    train_loss = tf.reduce_mean(cross_entropy)
    train_op = tf.train.AdamOptimizer(0.01).minimize(train_loss)
    train_acc = tf.nn.in_top_k(l2, fc_data, 1)
    train_acc = tf.reduce_mean(tf.cast(train_acc, tf.float16))

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    init = tf.global_variables_initializer()
    sess.run(init)

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        with open('loss_accuracy.csv', 'w+') as fp:
            for step in range(10000):
                if coord.should_stop():
                    break
                _, tr_loss, tr_acc = sess.run([train_op, train_loss, train_acc])

                if step % 50 == 0:
                    print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tr_loss, tr_acc * 100))
                    fp.write(str(tr_loss))
                    fp.write(',')
                    fp.write(str(tr_acc * 100))
                    fp.write('\n')
                    summary_str = sess.run(summary_op)
                    train_writer.add_summary(summary_str, step)
                if step % 2000 == 0 or (step + 1) == 10000:
                    checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)
    except tf.errors.OutOfRangeError:
        print("done")
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()
def test_on_picture():
    train_x, test_x, train_y, test_y = input_data.get_data()
    with tf.Graph().as_default() as g:
        x = tf.placeholder(tf.float32, [None, 64, 64, 3], name="x")
        out = infer.inference(x, train=False, regularizer=None)
        predict = tf.argmax(out, 1)
        with tf.Session() as sess:
            saver = tf.train.Saver()
            saver.restore(sess, tf.train.latest_checkpoint("./model"))
            res = sess.run(predict, feed_dict={x: test_x})
            print(res)
def test(datapath, tfrecord_path):
    if not os.path.exists(tfrecord_path):
        para, faultcode = input_data.get_data(datapath)
        create_tfrecord(para, faultcode, tfrecord_path)

    para_batch, faultcode_batch = read_tfrecord(tfrecord_path, 20, 200, 2)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)

    tf.train.start_queue_runners(sess=sess)
    para_val, faultcode_val = sess.run([para_batch, faultcode_batch])
    print('first batch:')
    print('para_val: ', para_val)
    print('faultcode_val', faultcode_val)
    print('len para', para_val.shape)
    para_val, faultcode_val = sess.run([para_batch, faultcode_batch])
    print('second batch:')
    print('para_val: ', para_val)
    print('faultcode_val', faultcode_val)
Example #4
0
import tensorflow as tf
import numpy as np
import input_data as input_data
import inference as infer
import os
import sys
from parameters import *
train_x, test_x, train_y, test_y = input_data.get_data()


def next_batch(num, data, labels):
    '''
    返回batch_size 为 num 的batch
    '''
    idx = np.arange(0, len(data))
    np.random.shuffle(idx)
    idx = idx[:num]
    data_shuffle = [data[i] for i in idx]
    labels_shuffle = [labels[i] for i in idx]

    return np.asarray(data_shuffle), np.asarray(labels_shuffle)


def train():
    x = tf.placeholder(
        tf.float32, [None, IMG_SIZE, IMG_SIZE, 3], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, 2], name='y-input')
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZATION_RATE)
    # 训练时, train=True,则会启动dropout
    # 给regularizer赋值则会将加入正则化,weights被正则化后加入集合losses当中
    y = infer.inference(x, train=True, regularizer=regularizer)
Example #5
0

# convolution
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


# pooling
def max_pool_2x2(x):
    return tf.nn.max_pool(x,
                          ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1],
                          padding='SAME')


train_images, train_labels, test_images, test_labels = input_data.get_data()

# model
x = tf.placeholder('float', shape=[None, 784])
y_ = tf.placeholder('float', shape=[None, 10])

# first convolutional layer
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# second convolutional layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
Example #6
0
def test():
    log_dir = '/home/lixiangyu/Documents/logs/'
    test_dir = '/home/lixiangyu/Desktop/test_data.csv'
    tfrecord_path = 'test.tfrecord'
    BATCH_SIZE = 64
    n_test = 50000
    CAPACITY = 2000
    NUM_THREADS = 32

    with tf.Graph().as_default():

        if not os.path.exists(tfrecord_path):
            test_para, test_faultcode = input_data.get_data(test_dir)
            tfrecord_manager.create_tfrecord(test_para, test_faultcode,
                                             tfrecord_path)

        para_test_batch, faultcode_test_batch = tfrecord_manager.read_tfrecord(
            tfrecord_path, BATCH_SIZE, CAPACITY, NUM_THREADS)

        # logits = model.alexnet(test_batch, BATCH_SIZE, n_classes, keep_prob)
        l1 = bpnn.addLayer(para_test_batch,
                           100,
                           40,
                           activate_function=tf.nn.relu)  # relu是激励函数的一种
        logits = bpnn.addLayer(l1, 40, 887, activate_function=None)
        top_k_op = tf.nn.in_top_k(logits, faultcode_test_batch, 1)
        saver = tf.train.Saver(tf.global_variables())

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(log_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')
                return

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            try:
                num_iter = int(math.ceil(n_test / BATCH_SIZE))
                true_count = 0
                total_sample_count = num_iter * BATCH_SIZE
                step = 0
                with open('submission.csv', 'w+') as fp:
                    while step < num_iter and not coord.should_stop():
                        predictions = sess.run([top_k_op])
                        for p in predictions:
                            for pp in p:
                                fp.write(str(pp))
                                fp.write('\n')
                        true_count += np.sum(predictions)
                        step += 1
                        precision = true_count / total_sample_count

                print('precision = %.4f' % precision)
            except Exception as e:
                coord.request_stop(e)
            finally:
                coord.request_stop()
                coord.join(threads)
def run_training():

    inputDataObj = input_data.get_data(FLAGS.input_data_dir)
    # Tell TensorFlow that the model will be built into the default Graph.
    with tf.Graph().as_default():
        # Generate placeholders for the MFCCfeatures and labels.
        MFCCfeature_placeholder, labels_placeholder = placeholder_inputs(
            FLAGS.batch_size)

        # Build a Graph that computes predictions from the inference model.
        logits = multilayer_perceptron.inference(MFCCfeature_placeholder,
                                                 FLAGS.hidden1, FLAGS.hidden2)

        # Add to the Graph the Ops for loss calculation.
        loss = multilayer_perceptron.loss(logits, labels_placeholder)

        # Add to the Graph the Ops that calculate and apply gradients.
        train_op = multilayer_perceptron.training(loss, FLAGS.learning_rate)

        # Add the Op to compare the logits to the labels during evaluation.
        eval_correct = multilayer_perceptron.evaluation(
            logits, labels_placeholder)

        # Build the summary Tensor based on the TF collection of Summaries.
        summary = tf.summary.merge_all()

        # Add the variable initializer Op.
        init = tf.global_variables_initializer()

        # Create a saver for writing training checkpoints.
        saver = tf.train.Saver()

        # Create a session for running Ops on the Graph.
        sess = tf.Session()

        # Instantiate a SummaryWriter to output summaries and the Graph.
        summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)

        # And then after everything is built:

        # Run the Op to initialize the variables.
        sess.run(init)

        # Start the training loop.

        for step in xrange(FLAGS.max_steps):

            start_time = time.time()

            # Fill a feed dictionary with the actual set of feature and labels
            # for this particular training step.
            feed_dict = fill_feed_dict(inputDataObj['train'],
                                       MFCCfeature_placeholder,
                                       labels_placeholder)

            # Run one step of the model.  The return values are the activations
            # from the `train_op` (which is discarded) and the `loss` Op.  To
            # inspect the values of your Ops or variables, you may include them
            # in the list passed to sess.run() and the value tensors will be
            # returned in the tuple from the call.
            _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

            duration = time.time() - start_time

            # Write the summaries and print an overview fairly often.
            if step % 100 == 0:
                # Print status to stdout.
                print('Step %d: loss = %.2f (%.3f sec)' %
                      (step, loss_value, duration))
                # Update the events file.
                summary_str = sess.run(summary, feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, step)
                summary_writer.flush()

            # Save a checkpoint and evaluate the model periodically.
            if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:

                checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
                saver.save(sess, checkpoint_file, global_step=step)
                # Evaluate against the training set.
                print('Training Data Eval:')
                do_eval(sess, eval_correct, MFCCfeature_placeholder,
                        labels_placeholder, inputDataObj['train'])
                print('Test Data Eval:')
                do_eval(sess, eval_correct, MFCCfeature_placeholder,
                        labels_placeholder, inputDataObj['test'])
            if (step + 1) == FLAGS.max_steps:
                print('final Data Eval:')
                do_eval(sess, eval_correct, MFCCfeature_placeholder,
                        labels_placeholder, inputDataObj['valid'])
Example #8
0
    def __init__(self,
                 ds_id,
                 n_samples=1000,
                 split=[0.6, 0.1, 0.3],
                 output=None,
                 random_state=None):
        """
        Args:
            ds_id: index of the dataset.
                1 - Letter recognition image data
                2 - Iris data
                3 - Glass identification data
                4 - Image segmentation data
                
                5 - Moons Overlapping
                6 - Blobs
                7 - Circles
                8 - Gaussian Quantiles modified
                9 - Multiclass
                10 - Gaussian Quantiles
                11 - Noise
                12 - Moons Separable
                
                13 - Marcin Luckner Dataset
                14 - MNIST Dataset
        """
        self.ds_id = ds_id
        if ds_id == 13:
            self.load_marcin_dataset(0)
            return
        elif ds_id == 14:
            self.load_mnist_data()
            return

        # load data
        x, y, self.target_names = get_data(ds_id,
                                           n_samples,
                                           binarize=True,
                                           random_state=random_state)
        self.n_features = x.shape[1]
        self.n_classes = y.shape[1]
        self.outliers = None
        # split into 60%, 10% and 30%
        if len(split) == 3:
            trn_size = split[0]
            vld_size = split[1]
            tst_size = split[2]

            x_trn, x_tst, y_trn, y_tst = \
                train_test_split(x, y, train_size=trn_size)
            x_vld, x_tst, y_vld, y_tst = \
                train_test_split(x_tst, y_tst, train_size=vld_size / (vld_size + tst_size))

            self.trn = Set(x_trn, y_trn)
            self.vld = Set(x_vld, y_vld)
            self.tst = Set(x_tst, y_tst)
        elif len(split) == 2:
            splt1 = train_test_split(x, y, test_size=split[0])
            self.trn = Set(splt1[1], splt1[3])
            self.vld = None
            self.tst = Set(splt1[0], splt1[2])

        self.print_info()

        # preprocess
        self.scale()
Example #9
0
wire4 = Wire(['U62', 'R66', 'U55', 'R34', 'D71', 'R55', 'D58', 'R83'])
coords3 = wire3.travel()
coords4 = wire4.travel()
intersection_cords2 = wire3.get_intersections(coords4)
assert min(
    wire3.manhattan_distance(value)
    for value in intersection_cords2[1:]) == 159

wire5 = Wire([
    'R98', 'U47', 'R26', 'D63', 'R33', 'U87', 'L62', 'D20', 'R33', 'U53', 'R51'
])
wire6 = Wire(
    ['U98', 'R91', 'D20', 'R16', 'D67', 'R40', 'U7', 'R15', 'U6', 'R7'])
coords5 = wire5.travel()
coords6 = wire6.travel()
intersection_cords3 = wire5.get_intersections(coords6)
assert min(
    wire5.manhattan_distance(value)
    for value in intersection_cords3[1:]) == 135

data = get_data('data.txt')
real_wire1 = Wire(data['Wire_0'])
real_wire2 = Wire(data['Wire_1'])
real_coords1 = real_wire1.travel()
real_coords2 = real_wire2.travel()
real_intersections = real_wire1.get_intersections(real_coords2)
print(
    min(
        real_wire1.manhattan_distance(value)
        for value in real_intersections[1:]))
Example #10
0
def train():
    para, faultcode = input_data.get_data(data_path)
    para_batch, faultcode_batch = input_data.get_batch(para, faultcode,
                                                       BATCH_SIZE, CAPACITY)

    x_data = para_batch  # 转为列向量
    # noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = faultcode_batch

    # x_data = np.linspace(-1, 1, 300)[:, np.newaxis]  # 转为列向量
    # noise = np.random.normal(0, 0.05, x_data.shape)
    # y_data = np.square(x_data) + 0.5 + noise

    xs = tf.placeholder(tf.float32,
                        [None, 100])  # 样本数未知,特征数为1,占位符最后要以字典形式在运行中填入
    ys = tf.placeholder(tf.int32, [None, 1])

    l1 = addLayer(x_data, 100, 20,
                  activate_function=tf.nn.relu)  # relu是激励函数的一种
    l2 = addLayer(l1, 20, 887, activate_function=None)

    # train_loss = tf.reduce_mean(tf.reduce_sum(tf.square((y_data - l2)), reduction_indices=[0]))
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=l2, labels=y_data)
    train_loss = tf.reduce_mean(cross_entropy)
    train_op = tf.train.GradientDescentOptimizer(0.001).minimize(train_loss)
    train_acc = tf.nn.in_top_k(l2, y_data, 1)
    train_acc = tf.reduce_mean(tf.cast(train_acc, tf.float16))

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    # loss = tf.reduce_mean(tf.reduce_sum(tf.square((y_data - l2)), reduction_indices=[0]))  # 需要向相加索引号,reduce执行跨纬度操作
    #
    # train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  # 选择梯度下降法
    #
    init = tf.global_variables_initializer()
    sess.run(init)

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in range(10000):
            if coord.should_stop():
                break
            _, tr_loss, tr_acc = sess.run([train_op, train_loss, train_acc])
            # aaa, bbb, cc = sess.run([l2, y_data, cross_entropy])
            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tr_loss, tr_acc * 100))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            if step % 2000 == 0 or (step + 1) == 10000:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    except tf.errors.OutOfRangeError:
        print("done")
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()