def create_model(scope, index, prefix, seed): with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): # split = splitter.splits[index] pipe = InputPipe(inp=None, features='./data/train_normed.csv', n_pages=train_size, mode=ModelMode.TRAIN, batch_size=batch_size, n_epoch=None, verbose=verbose, train_completeness_threshold=train_completeness_threshold, predict_completeness_threshold=train_completeness_threshold, train_window=train_window, predict_window=predict_window, rand_seed=seed, train_skip_first=hparams.train_skip_first, back_offset=predict_window if forward_split else 0) inp_scope.reuse_variables() # asgd_decay = 0.99 if avg_sgd else None train_model = Model(pipe, hparams, is_train=True, graph_prefix=prefix, asgd_decay=asgd_decay, seed=seed) scope.reuse_variables() eval_stages = [] if write_summaries: summ_path = f"{logdir}/{name}_{index}" if os.path.exists(summ_path): shutil.rmtree(summ_path) summ_writer = tf.summary.FileWriter(summ_path) # , graph=tf.get_default_graph() else: summ_writer = None stop_metric = None return ModelTrainerV2(train_model, eval_stages, index, patience=patience, stop_metric=stop_metric, summary_writer=summ_writer)
def predict(checkpoints, hparams, return_x=False, verbose=False, predict_window=6, back_offset=0, n_models=1, target_model=0, asgd=False, seed=1, batch_size=1024): with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): inp = VarFeeder.read_vars("data/vars") pipe = InputPipe(inp, page_features(inp), inp.n_pages, mode=ModelMode.PREDICT, batch_size=batch_size, n_epoch=1, verbose=verbose, train_completeness_threshold=0.01, predict_window=predict_window, predict_completeness_threshold=0.0, train_window=hparams.train_window, back_offset=back_offset) asgd_decay = 0.99 if asgd else None if n_models == 1: model = Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay) else: models = [] for i in range(n_models): prefix = f"m_{i}" with tf.variable_scope(prefix) as scope: models.append(Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay, graph_prefix=prefix)) model = models[target_model] if asgd: var_list = model.ema.variables_to_restore() print("$$$$$$$$$=",var_list) prefix = f"m_{target_model}" for var in list(var_list.keys()): if var.endswith('ExponentialMovingAverage') and not var.startswith(prefix): del var_list[var] else: var_list = None saver = tf.train.Saver(name='eval_saver', var_list=var_list) x_buffer = [] predictions = None with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess: pipe.load_vars(sess) for checkpoint in checkpoints: pred_buffer = [] pipe.init_iterator(sess) saver.restore(sess, checkpoint) cnt = 0 while True: try: if return_x: pred, x, pname = sess.run([model.predictions, model.inp.true_x, model.inp.page_ix]) else: pred, pname = sess.run([model.predictions, model.inp.page_ix]) utf_names = [str(name, 'utf-8') for name in pname] pred_df = pd.DataFrame(index=utf_names, data=np.expm1(pred)) pred_buffer.append(pred_df) if return_x: # noinspection PyUnboundLocalVariable x_values = pd.DataFrame(index=utf_names, data=np.round(np.expm1(x)).astype(np.int64)) x_buffer.append(x_values) newline = cnt % 80 == 0 if cnt > 0: print('.', end='\n' if newline else '', flush=True) if newline: print(cnt, end='') cnt += 1 except tf.errors.OutOfRangeError: print('🎉') break cp_predictions = pd.concat(pred_buffer) if predictions is None: predictions = cp_predictions else: predictions += cp_predictions predictions /= len(checkpoints) offset = pd.Timedelta(back_offset, 'D') start_prediction = inp.data_end + pd.Timedelta('1D') - offset end_prediction = start_prediction + pd.Timedelta(predict_window - 1, 'D') predictions.columns = pd.date_range(start_prediction, end_prediction) if return_x: x = pd.concat(x_buffer) start_data = inp.data_end - pd.Timedelta(hparams.train_window - 1, 'D') - back_offset end_data = inp.data_end - back_offset x.columns = pd.date_range(start_data, end_data) return predictions, x else: return predictions
def create_model(scope, index, prefix, seed): with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): split = splitter.splits[index] pipe = InputPipe(inp, features=split.train_set, n_pages=split.train_size, mode=ModelMode.TRAIN, batch_size=batch_size, n_epoch=None, verbose=verbose, train_completeness_threshold=train_completeness_threshold, predict_completeness_threshold=train_completeness_threshold, train_window=train_window, predict_window=predict_window, rand_seed=seed, train_skip_first=hparams.train_skip_first, back_offset=predict_window if forward_split else 0) inp_scope.reuse_variables() if side_split: side_eval_pipe = InputPipe(inp, features=split.test_set, n_pages=split.test_size, mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None, verbose=verbose, predict_window=predict_window, train_completeness_threshold=0.01, predict_completeness_threshold=0, train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches, back_offset=predict_window * (2 if forward_split else 1)) else: side_eval_pipe = None if forward_split: forward_eval_pipe = InputPipe(inp, features=split.test_set, n_pages=split.test_size, mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None, verbose=verbose, predict_window=predict_window, train_completeness_threshold=0.01, predict_completeness_threshold=0, train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches, back_offset=predict_window) else: forward_eval_pipe = None avg_sgd = asgd_decay is not None #asgd_decay = 0.99 if avg_sgd else None train_model = Model(pipe, hparams, is_train=True, graph_prefix=prefix, asgd_decay=asgd_decay, seed=seed) scope.reuse_variables() eval_stages = [] if side_split: side_eval_model = Model(side_eval_pipe, hparams, is_train=False, #loss_mask=np.concatenate([np.zeros(50, dtype=np.float32), np.ones(10, dtype=np.float32)]), seed=seed) eval_stages.append((Stage.EVAL_SIDE, side_eval_model)) if avg_sgd: eval_stages.append((Stage.EVAL_SIDE_EMA, side_eval_model)) if forward_split: forward_eval_model = Model(forward_eval_pipe, hparams, is_train=False, seed=seed) eval_stages.append((Stage.EVAL_FRWD, forward_eval_model)) if avg_sgd: eval_stages.append((Stage.EVAL_FRWD_EMA, forward_eval_model)) if write_summaries: summ_path = f"{logdir}/{name}_{index}" if os.path.exists(summ_path): shutil.rmtree(summ_path) summ_writer = tf.summary.FileWriter(summ_path) # , graph=tf.get_default_graph() else: summ_writer = None if do_eval and forward_split: stop_metric = lambda metrics: metrics[Stage.EVAL_FRWD]['SMAPE'].avg_epoch else: stop_metric = None return ModelTrainerV2(train_model, eval_stages, index, patience=patience, stop_metric=stop_metric, summary_writer=summ_writer)
def main(_): if len(sys.argv) < 3: print( 'Usage: ucdoc_saved_model.py [--model_version=y] --data_dir=xxx --ckpt_dir=xxx --saved_dir=xxx' ) sys.exit(-1) if FLAGS.training_iteration <= 0: print('Please specify a positive value for training iteration.') sys.exit(-1) if FLAGS.model_version <= 0: print('Please specify a positive value for version number.') sys.exit(-1) # create deploy model first with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): #inp = VarFeeder.read_vars("data/vars") inp = VarFeeder.read_vars(FLAGS.data_dir) pipe = InputPipe(inp, ucdoc_features(inp), inp.hits.shape[0], mode=ModelMode.PREDICT, batch_size=FLAGS.batch_size, n_epoch=1, verbose=False, train_completeness_threshold=0.01, predict_window=FLAGS.predict_window, predict_completeness_threshold=0.0, train_window=FLAGS.train_window, back_offset=FLAGS.predict_window + 1) asgd_decay = 0.99 if FLAGS.asgd else None if FLAGS.n_models == 1: model = Model(pipe, build_from_set(FLAGS.hparam_set), is_train=False, seed=1, asgd_decay=asgd_decay) else: models = [] for i in range(FLAGS.n_models): prefix = f"m_{i}" with tf.variable_scope(prefix) as scope: models.append( Model(pipe, build_from_set(FLAGS.hparam_set), is_train=False, seed=1, asgd_decay=asgd_decay, graph_prefix=prefix)) model = models[FLAGS.target_model] # load checkpoint model from training #ckpt_path = FLAGS.ckpt_dir print('loading checkpoint model...') ckpt_file = tf.train.latest_checkpoint(FLAGS.ckpt_dir) #graph = tf.Graph() graph = model.predictions.graph saver = tf.train.Saver(name='deploy_saver', var_list=None) with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True))) as sess: pipe.load_vars(sess) pipe.init_iterator(sess) saver.restore(sess, ckpt_file) print('Done loading checkpoint model') export_path_base = FLAGS.saved_dir export_path = os.path.join( tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(FLAGS.model_version))) print('Exporting trained model to', export_path) if os.path.isdir(export_path): shutil.rmtree(export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) true_x = tf.saved_model.utils.build_tensor_info(model.inp.true_x) time_x = tf.saved_model.utils.build_tensor_info(model.inp.time_x) norm_x = tf.saved_model.utils.build_tensor_info(model.inp.norm_x) lagged_x = tf.saved_model.utils.build_tensor_info(model.inp.lagged_x) true_y = tf.saved_model.utils.build_tensor_info(model.inp.true_y) time_y = tf.saved_model.utils.build_tensor_info(model.inp.time_y) norm_y = tf.saved_model.utils.build_tensor_info(model.inp.norm_y) norm_mean = tf.saved_model.utils.build_tensor_info(model.inp.norm_mean) norm_std = tf.saved_model.utils.build_tensor_info(model.inp.norm_std) pg_features = tf.saved_model.utils.build_tensor_info( model.inp.ucdoc_features) page_ix = tf.saved_model.utils.build_tensor_info(model.inp.page_ix) pred = tf.saved_model.utils.build_tensor_info(model.predictions) labeling_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={ "truex": true_x, "timex": time_x, "normx": norm_x, "laggedx": lagged_x, "truey": true_y, "timey": time_y, "normy": norm_y, "normmean": norm_mean, "normstd": norm_std, "page_features": pg_features, "pageix": page_ix, }, outputs={"pred": pred}, method_name="tensorflow/serving/predict")) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: labeling_signature }, main_op=tf.tables_initializer(), strip_default_attrs=True) builder.save() print("Build Done")
def predict(checkpoints, hparams, datadir="data", verbose=False, n_models=1, target_model=0, asgd=False, seed=1, batch_size=50): with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): inp = VarFeeder.read_vars(os.path.join(datadir, "vars")) pipe = InputPipe(datadir, inp, infer_features(inp), mode=ModelMode.PREDICT, batch_size=batch_size, n_epoch=1, verbose=verbose, train_completeness_threshold=0.01, train_window=hparams.train_window) asgd_decay = 0.99 if asgd else None if n_models == 1: model = Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay) else: models = [] for i in range(n_models): prefix = f"m_{i}" with tf.variable_scope(prefix) as scope: models.append( Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay, graph_prefix=prefix)) model = models[target_model] if asgd: var_list = model.ema.variables_to_restore() prefix = f"m_{target_model}" for var in list(var_list.keys()): if var.endswith( 'ExponentialMovingAverage') and not var.startswith(prefix): del var_list[var] else: var_list = None saver = tf.train.Saver(name='eval_saver', var_list=var_list) x_buffer = [] predictions = None with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True))) as sess: pipe.load_vars(sess) for checkpoint in checkpoints: pred_buffer = [] pipe.init_iterator(sess) saver.restore(sess, checkpoint) cnt = 0 while True: try: pred, pname = sess.run([model.prediction, model.inp.vm_ix]) # utf_names = [str(name, 'utf-8') for name in pname] utf_names = pname pred_df = pd.DataFrame(index=utf_names, data=np.expm1(pred) - 1) pred_buffer.append(pred_df) newline = cnt % 80 == 0 if cnt > 0: print('.', end='\n' if newline else '', flush=True) if newline: print(cnt, end='') cnt += 1 except tf.errors.OutOfRangeError: print('Done!') break cp_predictions = pd.concat(pred_buffer) if predictions is None: predictions = cp_predictions else: predictions += cp_predictions predictions /= len(checkpoints) return predictions.iloc[:, -1]
def main(_): if not FLAGS.server: print('please specify server host:port') return channel = grpc.insecure_channel(FLAGS.server) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = predict_pb2.PredictRequest() request.model_spec.name = "ucdoc" request.model_spec.signature_name = "serving_default" with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): inp = VarFeeder.read_vars("data/vars") pipe = InputPipe(inp, ucdoc_features(inp), inp.n_pages, mode=ModelMode.PREDICT, batch_size=FLAGS.batch_size, n_epoch=1, verbose=FLAGS.verbose, train_completeness_threshold=0.01, predict_window=FLAGS.predict_window, predict_completeness_threshold=0.0, train_window=FLAGS.train_window, back_offset=FLAGS.predict_window + 1) with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True))) as sess: pipe.load_vars(sess) pipe.init_iterator(sess) while True: try: truex, timex, normx, laggedx, truey, timey, normy, normmean, normstd, pgfeatures, pageix = \ sess.run([pipe.true_x, pipe.time_x, pipe.norm_x, pipe.lagged_x, pipe.true_y, pipe.time_y, pipe.norm_y, pipe.norm_mean, pipe.norm_std, pipe.ucdoc_features, pipe.page_ix]) request.inputs["truex"].CopyFrom(tf.make_tensor_proto(truex)) request.inputs["timex"].CopyFrom(tf.make_tensor_proto(timex)) request.inputs["normx"].CopyFrom(tf.make_tensor_proto(normx)) request.inputs["laggedx"].CopyFrom( tf.make_tensor_proto(laggedx)) request.inputs["truey"].CopyFrom(tf.make_tensor_proto(truey)) request.inputs["timey"].CopyFrom(tf.make_tensor_proto(timey)) request.inputs["normy"].CopyFrom(tf.make_tensor_proto(normy)) request.inputs["normmean"].CopyFrom( tf.make_tensor_proto(normmean)) request.inputs["normstd"].CopyFrom( tf.make_tensor_proto(normstd)) request.inputs["page_features"].CopyFrom( tf.make_tensor_proto(pgfeatures)) request.inputs["pageix"].CopyFrom(tf.make_tensor_proto(pageix)) response = stub.Predict(request, 10) tensor_proto = response.outputs['pred'] if not 'pred_result' in locals(): pred_result = tf.contrib.util.make_ndarray(tensor_proto) else: pred_result = np.concatenate([ pred_result, tf.contrib.util.make_ndarray(tensor_proto) ]) except tf.errors.OutOfRangeError: print('done with prediction') break pred_result = np.expm1(pred_result) + 0.5 pred_result = pred_result.astype(int) if not os.path.exists(FLAGS.result_dir): os.mkdir(FLAGS.result_dir) result_file = os.path.join(FLAGS.result_dir, "predict.pkl") pickle.dump(pred_result, open(result_file, "wb")) print('finished prediction')
def main(_): if len(sys.argv) < 3: print( 'Usage: saved_model.py [--model_version=y] --data_dir=xxx --ckpt_dir=xxx --saved_dir=xxx' ) sys.exit(-1) if FLAGS.training_iteration <= 0: print('Please specify a positive value for training iteration.') sys.exit(-1) if FLAGS.model_version <= 0: print('Please specify a positive value for version number.') sys.exit(-1) with open(FLAGS.config_file, 'r') as ymlfile: cfg = yaml.load(ymlfile) holiday_list = cfg['pipeline']['normalization']['holidays'] if FLAGS.back_offset < FLAGS.predict_window: extend_inp(FLAGS.data_dir, FLAGS.predict_window, holiday_list) # create deploy model first back_offset_ = FLAGS.back_offset with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): if FLAGS.back_offset < FLAGS.predict_window: inp = VarFeeder.read_vars( os.path.join(FLAGS.data_dir, 'predict_future')) back_offset_ += FLAGS.predict_window else: inp = VarFeeder.read_vars(FLAGS.data_dir) pipe = InputPipe(inp, ucdoc_features(inp), inp.hits.shape[0], mode=ModelMode.PREDICT, batch_size=FLAGS.batch_size, n_epoch=1, verbose=False, train_completeness_threshold=0.01, predict_window=FLAGS.predict_window, predict_completeness_threshold=0.0, train_window=FLAGS.train_window, back_offset=back_offset_) asgd_decay = 0.99 if FLAGS.asgd else None if FLAGS.n_models == 1: model = Model(pipe, build_from_set(FLAGS.hparam_set), is_train=False, seed=1, asgd_decay=asgd_decay) else: models = [] for i in range(FLAGS.n_models): prefix = f"m_{i}" with tf.variable_scope(prefix) as scope: models.append( Model(pipe, build_from_set(FLAGS.hparam_set), is_train=False, seed=1, asgd_decay=asgd_decay, graph_prefix=prefix)) model = models[FLAGS.target_model] if FLAGS.asgd: var_list = model.ema.variables_to_restore() if FLAGS.n_models > 1: prefix = f"m_{target_model}" for var in list(var_list.keys()): if var.endswith('ExponentialMovingAverage' ) and not var.startswith(prefix): del var_list[var] else: var_list = None # load checkpoint model from training #ckpt_path = FLAGS.ckpt_dir print('loading checkpoint model...') ckpt_file = tf.train.latest_checkpoint(FLAGS.ckpt_dir) #graph = tf.Graph() graph = model.predictions.graph init = tf.global_variables_initializer() saver = tf.train.Saver(name='deploy_saver', var_list=var_list) with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True))) as sess: sess.run(init) pipe.load_vars(sess) pipe.init_iterator(sess) saver.restore(sess, ckpt_file) print('Done loading checkpoint model') export_path_base = FLAGS.saved_dir export_path = os.path.join( tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(FLAGS.model_version))) print('Exporting trained model to', export_path) if os.path.isdir(export_path): shutil.rmtree(export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) true_x = tf.saved_model.utils.build_tensor_info( model.inp.true_x) # pipe.true_x time_x = tf.saved_model.utils.build_tensor_info( model.inp.time_x) # pipe.time_x norm_x = tf.saved_model.utils.build_tensor_info( model.inp.norm_x) # pipe.norm_x lagged_x = tf.saved_model.utils.build_tensor_info( model.inp.lagged_x) # pipe.lagged_x true_y = tf.saved_model.utils.build_tensor_info( model.inp.true_y) # pipe.true_y time_y = tf.saved_model.utils.build_tensor_info( model.inp.time_y) # pipe.time_y norm_y = tf.saved_model.utils.build_tensor_info( model.inp.norm_y) # pipe.norm_y norm_mean = tf.saved_model.utils.build_tensor_info( model.inp.norm_mean) # pipe.norm_mean norm_std = tf.saved_model.utils.build_tensor_info( model.inp.norm_std) # pipe.norm_std pg_features = tf.saved_model.utils.build_tensor_info( model.inp.ucdoc_features) # pipe.ucdoc_features page_ix = tf.saved_model.utils.build_tensor_info( model.inp.page_ix) # pipe.page_ix #pred = tf.saved_model.utils.build_tensor_info(graph.get_operation_by_name('m_0/add').outputs[0]) pred = tf.saved_model.utils.build_tensor_info(model.predictions) labeling_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={ "truex": true_x, "timex": time_x, "normx": norm_x, "laggedx": lagged_x, "truey": true_y, "timey": time_y, "normy": norm_y, "normmean": norm_mean, "normstd": norm_std, "page_features": pg_features, "pageix": page_ix, }, outputs={"predictions": pred}, method_name="tensorflow/serving/predict")) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: labeling_signature }, main_op=tf.tables_initializer(), strip_default_attrs=True) builder.save() print("Build Done")
def create_model(scope, index, prefix, seed): # todo 主要是创建了模型,以及返回一些None的东西。 # 数据在构建模型的时候使用了,模型中只使用了数据的预测窗口的长度--不对,应该是创建模型的时候直接喂入数据了。 with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): split = splitter.splits[index] pipe = InputPipe( inp, features=split.train_set, n_pages=split.train_size, mode=ModelMode.TRAIN, batch_size=batch_size, n_epoch=None, verbose=verbose, train_completeness_threshold=train_completeness_threshold, predict_completeness_threshold=train_completeness_threshold, train_window=train_window, predict_window=predict_window, rand_seed=seed, train_skip_first=hparams.train_skip_first, back_offset=predict_window if forward_split else 0) inp_scope.reuse_variables() # todo side_split: False; forward_split:False; eval_stages: []; if side_split: side_eval_pipe = InputPipe( inp, features=split.test_set, n_pages=split.test_size, mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None, verbose=verbose, predict_window=predict_window, train_completeness_threshold=0.01, predict_completeness_threshold=0, train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches, back_offset=predict_window * (2 if forward_split else 1)) else: side_eval_pipe = None if forward_split: forward_eval_pipe = InputPipe( inp, features=split.test_set, n_pages=split.test_size, mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None, verbose=verbose, predict_window=predict_window, train_completeness_threshold=0.01, predict_completeness_threshold=0, train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches, back_offset=predict_window) else: forward_eval_pipe = None avg_sgd = asgd_decay is not None #asgd_decay = 0.99 if avg_sgd else None train_model = Model(pipe, hparams, is_train=True, graph_prefix=prefix, asgd_decay=asgd_decay, seed=seed) scope.reuse_variables() eval_stages = [] if side_split: # print('2 side_split side_eval_model') side_eval_model = Model( side_eval_pipe, hparams, is_train=False, #loss_mask=np.concatenate([np.zeros(50, dtype=np.float32), np.ones(10, dtype=np.float32)]), seed=seed) # print("2 side_eval_model -- 2") # todo TRAIN = 0; EVAL_SIDE = 1; EVAL_FRWD = 2; EVAL_SIDE_EMA = 3; EVAL_FRWD_EMA = 4 eval_stages.append((Stage.EVAL_SIDE, side_eval_model)) if avg_sgd: eval_stages.append((Stage.EVAL_SIDE_EMA, side_eval_model)) if forward_split: # print("3 forward_split forward_eval_model") # tf.reset_default_graph() forward_eval_model = Model(forward_eval_pipe, hparams, is_train=False, seed=seed) # print("3 forward_split forward_eval_model -- 2") eval_stages.append((Stage.EVAL_FRWD, forward_eval_model)) if avg_sgd: eval_stages.append((Stage.EVAL_FRWD_EMA, forward_eval_model)) if write_summaries: summ_path = f"{logdir}/{name}_{index}" # print("write_summaries summ_path",summ_path) if os.path.exists(summ_path): shutil.rmtree(summ_path) summ_writer = tf.summary.FileWriter( summ_path) # , graph=tf.get_default_graph() else: summ_writer = None if do_eval and forward_split: stop_metric = lambda metrics: metrics[Stage.EVAL_FRWD]['SMAPE' ].avg_epoch else: stop_metric = None # todo side_split: False; forward_split:False; # summ_writer=<tensorflow.python.summary.writer.writer.FileWriter object at 0x7ff5dc176710>; # eval_stages: []; stop_metric=None; patience=2; index=0 # print(f"side_split: {side_split}; forward_split:{forward_split}; summ_writer={summ_writer};" # f"eval_stages: {eval_stages}; stop_metric={stop_metric}; patience={patience}; index={index}") return ModelTrainerV2(train_model, eval_stages, index, patience=patience, stop_metric=stop_metric, summary_writer=summ_writer)