Example #1
0
def main():
    inicio = time()
    rand = Random()
    rand.seed(int(time()))

    ea = ec.GA(rand)
    ea.selector = ec.selectors.tournament_selection
    ea.variator = [
        ec.variators.uniform_crossover, ec.variators.gaussian_mutation
    ]
    ea.replacer = ec.replacers.steady_state_replacement

    ea.terminator = terminators.generation_termination

    #ea.observer = [ec.observers.stats_observer, ec.observers.file_observer]

    final_pop = ea.evolve(generator=generate_,
                          evaluator=evaluate_,
                          pop_size=5000,
                          maximize=True,
                          bounder=ec.Bounder(0, 53000),
                          max_generations=20000,
                          num_inputs=12,
                          crossover_rate=1.0,
                          num_crossover_points=1,
                          mutation_rate=0.25,
                          num_elites=1,
                          num_selected=5,
                          tournament_size=2,
                          statistics_file=open("aviao_stats.csv", 'w'),
                          individuals_file=open("aviao_individuals.csv", 'w'))

    final_pop.sort(reverse=True)
    print(final_pop[0])

    perform_fitness(final_pop[0].candidate[0], final_pop[0].candidate[1],
                    final_pop[0].candidate[2], final_pop[0].candidate[3],
                    final_pop[0].candidate[4], final_pop[0].candidate[5],
                    final_pop[0].candidate[6], final_pop[0].candidate[7],
                    final_pop[0].candidate[8], final_pop[0].candidate[9],
                    final_pop[0].candidate[10], final_pop[0].candidate[11])
    solution_evaluation(final_pop[0].candidate[0], final_pop[0].candidate[1],
                        final_pop[0].candidate[2], final_pop[0].candidate[3],
                        final_pop[0].candidate[4], final_pop[0].candidate[5],
                        final_pop[0].candidate[6], final_pop[0].candidate[7],
                        final_pop[0].candidate[8], final_pop[0].candidate[9],
                        final_pop[0].candidate[10], final_pop[0].candidate[11])
    fim = time()
    #solution_evaluation(final_pop[0].candidate[0], final_pop[0].candidate[1])
    print("\nTempo de processamento: ", fim - inicio)
Example #2
0
def optimize_core():
    rand = Random()
    rand.seed(int(time.time()))
    es = ec.GA(rand)

    es.terminator = terminators.evaluation_termination
    es.observer = inspyred.ec.observers.stats_observer
    final_pop = es.evolve(generator=generate_design_variable,
                          evaluator=evaluate_optimization,
                          maximize=False,
                          pop_size=100,
                          bounder=inspyred.ec.Bounder([-100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0, -100.0],
                                                      [100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]),
                          max_evaluations=10000,
                          num_elites=1,
                          num_inputs=1)
Example #3
0
def main():
    rand = Random()
    rand.seed(int(time()))

    ea = ec.GA(rand)
    ea.selector = ec.selectors.tournament_selection
    ea.variator = [
        ec.variators.uniform_crossover, ec.variators.gaussian_mutation
    ]
    ea.replacer = ec.replacers.steady_state_replacement

    ea.terminator = terminators.generation_termination

    ea.observer = [ec.observers.stats_observer, ec.observers.file_observer]

    final_pop = ea.evolve(generator=generate_,
                          evaluator=evaluate_,
                          pop_size=10000,
                          maximize=True,
                          bounder=ec.Bounder(0, 800),
                          max_generations=10000,
                          num_imputs=2,
                          crossover_rae=1.0,
                          num_crossover_points=1,
                          mutation_rate=0.15,
                          num_elites=1,
                          num_selected=2,
                          tournament_size=2,
                          statistics_file=open("garrafas_stats.csv", "w"),
                          individuals_file=open("garrafas_individuais.csv",
                                                "w"))

    final_pop.sort(reverse=True)
    print(final_pop[0])

    perform_fitness(final_pop[0].candidate[0], final_pop[0].candidate[1])
    solution_evaluation(final_pop[0].candidate[0], final_pop[0].candidate[1])
Example #4
0
def create_island(rand_seed, island_number, mp_migrator):
    rand = random.Random()
    rand.seed(rand_seed)
    ga = ec.GA(rand)
    ga.selector = inspyred.ec.selectors.tournament_selection
    ga.terminator = terminators.evaluation_termination
    #ga.variator = [inspyred.ec.variators.blend_crossover, inspyred.ec.variators.gaussian_mutation]
    #ga.terminator = terminators.no_improvement_termination
    ga.observer = [
        inspyred.ec.observers.stats_observer,
        inspyred.ec.observers.plot_observer,
        inspyred.ec.observers.file_observer
    ]
    ga.migrator = mp_migrator
    final_pop = ga.evolve(
        evaluator=evaluator,
        generator=generator,
        statistics_file=open("stats_%d.csv" % island_number, "w"),
        individuals_file=open("inds_%d.csv" % island_number, "w"),
        crossover_rate=0.9,
        mutation_rate=0.01,
        pop_size=500,
        max_evaluations=50000,
        #max_generations = 15,
        tournament_size=3,
        num_selected=500,
        evaluate_migrant=False)
    final_pop.sort(reverse=True)
    print(final_pop[0])

    A = decoder(final_pop[0].candidate)
    s = 0
    for i in A:
        s += i
    print(A)
    print(s)
Example #5
0
def evolOptim(self, pc):
    """
    Function for/to <short description of `netpyne.batch.evol.evolOptim`>

    Parameters
    ----------
    self : <type>
        <Short description of self>
        **Default:** *required*

    pc : <type>
        <Short description of pc>
        **Default:** *required*


    """

    import sys
    import inspyred.ec as EC

    # -------------------------------------------------------------------------------
    # Evolutionary optimization: Parallel evaluation
    # -------------------------------------------------------------------------------
    def evaluator(candidates, args):
        import os
        import signal
        global ngen
        ngen += 1
        total_jobs = 0

        # options slurm, mpi
        type = args.get('type', 'mpi_direct')

        # paths to required scripts
        script = args.get('script', 'init.py')
        netParamsSavePath = args.get('netParamsSavePath')
        genFolderPath = self.saveFolder + '/gen_' + str(ngen)

        # mpi command setup
        nodes = args.get('nodes', 1)
        paramLabels = args.get('paramLabels', [])
        coresPerNode = args.get('coresPerNode', 1)
        mpiCommand = args.get('mpiCommand', 'mpirun')
        nrnCommand = args.get('nrnCommand', 'nrniv')

        numproc = nodes * coresPerNode

        # slurm setup
        custom = args.get('custom', '')
        folder = args.get('folder', '.')
        email = args.get('email', '[email protected]')
        walltime = args.get('walltime', '00:01:00')
        reservation = args.get('reservation', None)
        allocation = args.get('allocation', 'csd403')  # NSG account

        # fitness function
        fitnessFunc = args.get('fitnessFunc')
        fitnessFuncArgs = args.get('fitnessFuncArgs')
        defaultFitness = args.get('defaultFitness')

        # read params or set defaults
        sleepInterval = args.get('sleepInterval', 0.2)

        # create folder if it does not exist
        createFolder(genFolderPath)

        # remember pids and jobids in a list
        pids = []
        jobids = {}

        # create a job for each candidate
        for candidate_index, candidate in enumerate(candidates):
            # required for slurm
            sleep(sleepInterval)

            # name and path
            jobName = "gen_" + str(ngen) + "_cand_" + str(candidate_index)
            jobPath = genFolderPath + '/' + jobName

            # set initial cfg initCfg
            if len(self.initCfg) > 0:
                for paramLabel, paramVal in self.initCfg.items():
                    self.setCfgNestedParam(paramLabel, paramVal)

            # modify cfg instance with candidate values
            for label, value in zip(paramLabels, candidate):
                print('set %s=%s' % (label, value))
                self.setCfgNestedParam(label, value)

            #self.setCfgNestedParam("filename", jobPath)
            self.cfg.simLabel = jobName
            self.cfg.saveFolder = genFolderPath

            # save cfg instance to file
            cfgSavePath = jobPath + '_cfg.json'
            self.cfg.save(cfgSavePath)

            if type == 'mpi_bulletin':
                # ----------------------------------------------------------------------
                # MPI master-slaves
                # ----------------------------------------------------------------------
                pc.submit(runEvolJob, nrnCommand, script, cfgSavePath,
                          netParamsSavePath, jobPath)
                print('-' * 80)

            else:
                # ----------------------------------------------------------------------
                # MPI job commnand
                # ----------------------------------------------------------------------
                if mpiCommand == '':
                    command = '%s %s simConfig=%s netParams=%s ' % (
                        nrnCommand, script, cfgSavePath, netParamsSavePath)
                else:
                    command = '%s -np %d %s -python -mpi %s simConfig=%s netParams=%s ' % (
                        mpiCommand, numproc, nrnCommand, script, cfgSavePath,
                        netParamsSavePath)

                # ----------------------------------------------------------------------
                # run on local machine with <nodes*coresPerNode> cores
                # ----------------------------------------------------------------------
                if type == 'mpi_direct':
                    executer = '/bin/bash'
                    jobString = bashTemplate('mpi_direct') % (custom, folder,
                                                              command)

                # ----------------------------------------------------------------------
                # run on HPC through slurm
                # ----------------------------------------------------------------------
                elif type == 'hpc_slurm':
                    executer = 'sbatch'
                    res = '#SBATCH --res=%s' % (
                        reservation) if reservation else ''
                    jobString = bashTemplate('hpc_slurm') % (
                        jobName, allocation, walltime, nodes, coresPerNode,
                        jobPath, jobPath, email, res, custom, folder, command)

                # ----------------------------------------------------------------------
                # run on HPC through PBS
                # ----------------------------------------------------------------------
                elif type == 'hpc_torque':
                    executer = 'qsub'
                    queueName = args.get('queueName', 'default')
                    nodesppn = 'nodes=%d:ppn=%d' % (nodes, coresPerNode)
                    jobString = bashTemplate('hpc_torque') % (
                        jobName, walltime, queueName, nodesppn, jobPath,
                        jobPath, custom, command)

                # ----------------------------------------------------------------------
                # save job and run
                # ----------------------------------------------------------------------
                print('Submitting job ', jobName)
                print(jobString)
                print('-' * 80)
                # save file
                batchfile = '%s.sbatch' % (jobPath)
                with open(batchfile, 'w') as text_file:
                    text_file.write("%s" % jobString)

                #with open(jobPath+'.run', 'a+') as outf, open(jobPath+'.err', 'w') as errf:
                with open(jobPath + '.jobid',
                          'w') as outf, open(jobPath + '.err', 'w') as errf:
                    pids.append(
                        Popen([executer, batchfile],
                              stdout=outf,
                              stderr=errf,
                              preexec_fn=os.setsid).pid)
                #proc = Popen(command.split([executer, batchfile]), stdout=PIPE, stderr=PIPE)
                sleep(0.1)
                #read = proc.stdout.read()
                with open(jobPath + '.jobid', 'r') as outf:
                    read = outf.readline()
                print(read)
                if len(read) > 0:
                    jobid = int(read.split()[-1])
                    jobids[candidate_index] = jobid
                print('jobids', jobids)
            total_jobs += 1
            sleep(0.1)

        # ----------------------------------------------------------------------
        # gather data and compute fitness
        # ----------------------------------------------------------------------
        if type == 'mpi_bulletin':
            # wait for pc bulletin board jobs to finish
            try:
                while pc.working():
                    sleep(1)
                #pc.done()
            except:
                pass

        num_iters = 0
        jobs_completed = 0
        fitness = [None for cand in candidates]
        # print outfilestem
        print("Waiting for jobs from generation %d/%d ..." %
              (ngen, args.get('max_generations')))
        # print "PID's: %r" %(pids)
        # start fitness calculation
        while jobs_completed < total_jobs:
            unfinished = [i for i, x in enumerate(fitness) if x is None]
            for candidate_index in unfinished:
                try:  # load simData and evaluate fitness
                    jobNamePath = genFolderPath + "/gen_" + str(
                        ngen) + "_cand_" + str(candidate_index)
                    if os.path.isfile(jobNamePath + '.json'):
                        with open('%s.json' % (jobNamePath)) as file:
                            simData = json.load(file)['simData']
                        fitness[candidate_index] = fitnessFunc(
                            simData, **fitnessFuncArgs)
                        jobs_completed += 1
                        print('  Candidate %d fitness = %.1f' %
                              (candidate_index, fitness[candidate_index]))
                    elif os.path.isfile(jobNamePath + '.pkl'):
                        with open('%s.pkl' % (jobNamePath), 'rb') as file:
                            simData = pickle.load(file)['simData']
                        fitness[candidate_index] = fitnessFunc(
                            simData, **fitnessFuncArgs)
                        jobs_completed += 1
                        print('  Candidate %d fitness = %.1f' %
                              (candidate_index, fitness[candidate_index]))
                except Exception as e:
                    # print
                    err = "There was an exception evaluating candidate %d:" % (
                        candidate_index)
                    print(("%s \n %s" % (err, e)))
                    #pass
                    #print 'Error evaluating fitness of candidate %d'%(candidate_index)
            num_iters += 1
            print('completed: %d' % (jobs_completed))
            if num_iters >= args.get('maxiter_wait', 5000):
                print(
                    "Max iterations reached, the %d unfinished jobs will be canceled and set to default fitness"
                    % (len(unfinished)))
                for canditade_index in unfinished:
                    fitness[canditade_index] = defaultFitness
                    jobs_completed += 1
                    try:
                        if 'scancelUser' in kwargs:
                            os.system('scancel -u %s' %
                                      (kwargs['scancelUser']))
                        else:
                            os.system(
                                'scancel %d' % (jobids[candidate_index])
                            )  # terminate unfinished job (resubmitted jobs not terminated!)
                    except:
                        pass
            sleep(args.get('time_sleep', 1))

        # kill all processes
        if type == 'mpi_bulletin':
            try:
                with open("./pids.pid",
                          'r') as file:  # read pids for mpi_bulletin
                    pids = [int(i) for i in file.read().split(' ')[:-1]]

                with open("./pids.pid", 'w') as file:  # delete content
                    pass
                for pid in pids:
                    try:
                        os.killpg(os.getpgid(pid), signal.SIGTERM)
                    except:
                        pass
            except:
                pass
        # don't want to to this for hpcs since jobs are running on compute nodes not master
        # else:
        #     try:
        #         for pid in pids: os.killpg(os.getpgid(pid), signal.SIGTERM)
        #     except:
        #         pass
        # return
        print("-" * 80)
        print("  Completed a generation  ")
        print("-" * 80)
        return fitness

    # -------------------------------------------------------------------------------
    # Evolutionary optimization: Generation of first population candidates
    # -------------------------------------------------------------------------------
    def generator(random, args):
        # generate initial values for candidates
        return [
            random.uniform(l, u)
            for l, u in zip(args.get('lower_bound'), args.get('upper_bound'))
        ]

    # -------------------------------------------------------------------------------
    # Mutator
    # -------------------------------------------------------------------------------
    @EC.variators.mutator
    def nonuniform_bounds_mutation(random, candidate, args):
        """Return the mutants produced by nonuniform mutation on the candidates.
        .. Arguments:
            random -- the random number generator object
            candidate -- the candidate solution
            args -- a dictionary of keyword arguments
        Required keyword arguments in args:
        Optional keyword arguments in args:
        - *mutation_strength* -- the strength of the mutation, where higher
            values correspond to greater variation (default 1)
        """
        lower_bound = args.get('lower_bound')
        upper_bound = args.get('upper_bound')
        strength = args.setdefault('mutation_strength', 1)
        mutant = copy(candidate)
        for i, (c, lo,
                hi) in enumerate(zip(candidate, lower_bound, upper_bound)):
            if random.random() <= 0.5:
                new_value = c + (hi - c) * (1.0 - random.random()**strength)
            else:
                new_value = c - (c - lo) * (1.0 - random.random()**strength)
            mutant[i] = new_value

        return mutant

    # -------------------------------------------------------------------------------
    # Evolutionary optimization: Main code
    # -------------------------------------------------------------------------------
    import os
    # create main sim directory and save scripts
    self.saveScripts()

    global ngen
    ngen = -1

    # log for simulation
    logger = logging.getLogger('inspyred.ec')
    logger.setLevel(logging.DEBUG)
    file_handler = logging.FileHandler(self.saveFolder + '/inspyred.log',
                                       mode='a')
    file_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)

    # create randomizer instance
    rand = Random()
    rand.seed(self.seed)

    # create file handlers for observers
    stats_file, ind_stats_file = self.openFiles2SaveStats()

    # gather **kwargs
    kwargs = {'cfg': self.cfg}
    kwargs['num_inputs'] = len(self.params)
    kwargs['paramLabels'] = [x['label'] for x in self.params]
    kwargs['lower_bound'] = [x['values'][0] for x in self.params]
    kwargs['upper_bound'] = [x['values'][1] for x in self.params]
    kwargs['statistics_file'] = stats_file
    kwargs['individuals_file'] = ind_stats_file
    kwargs[
        'netParamsSavePath'] = self.saveFolder + '/' + self.batchLabel + '_netParams.py'

    for key, value in self.evolCfg.items():
        kwargs[key] = value
    if not 'maximize' in kwargs: kwargs['maximize'] = False

    for key, value in self.runCfg.items():
        kwargs[key] = value

    # if using pc bulletin board, initialize all workers
    if self.runCfg.get('type', None) == 'mpi_bulletin':
        for iworker in range(int(pc.nhost())):
            pc.runworker()

    #------------------------------------------------------------------
    # Evolutionary algorithm method
    #-------------------------------------------------------------------
    # Custom algorithm based on Krichmar's params
    if self.evolCfg['evolAlgorithm'] == 'custom':
        ea = EC.EvolutionaryComputation(rand)
        ea.selector = EC.selectors.tournament_selection
        ea.variator = [
            EC.variators.uniform_crossover, nonuniform_bounds_mutation
        ]
        ea.replacer = EC.replacers.generational_replacement
        if not 'tournament_size' in kwargs: kwargs['tournament_size'] = 2
        if not 'num_selected' in kwargs:
            kwargs['num_selected'] = kwargs['pop_size']

    # Genetic
    elif self.evolCfg['evolAlgorithm'] == 'genetic':
        ea = EC.GA(rand)

    # Evolution Strategy
    elif self.evolCfg['evolAlgorithm'] == 'evolutionStrategy':
        ea = EC.ES(rand)

    # Simulated Annealing
    elif self.evolCfg['evolAlgorithm'] == 'simulatedAnnealing':
        ea = EC.SA(rand)

    # Differential Evolution
    elif self.evolCfg['evolAlgorithm'] == 'diffEvolution':
        ea = EC.DEA(rand)

    # Estimation of Distribution
    elif self.evolCfg['evolAlgorithm'] == 'estimationDist':
        ea = EC.EDA(rand)

    # Particle Swarm optimization
    elif self.evolCfg['evolAlgorithm'] == 'particleSwarm':
        from inspyred import swarm
        ea = swarm.PSO(rand)
        ea.topology = swarm.topologies.ring_topology

    # Ant colony optimization (requires components)
    elif self.evolCfg['evolAlgorithm'] == 'antColony':
        from inspyred import swarm
        if not 'components' in kwargs:
            raise ValueError("%s requires components" %
                             (self.evolCfg['evolAlgorithm']))
        ea = swarm.ACS(rand, self.evolCfg['components'])
        ea.topology = swarm.topologies.ring_topology

    else:
        raise ValueError("%s is not a valid strategy" %
                         (self.evolCfg['evolAlgorithm']))

    ea.terminator = EC.terminators.generation_termination
    ea.observer = [EC.observers.stats_observer, EC.observers.file_observer]

    # -------------------------------------------------------------------------------
    # Run algorithm
    # -------------------------------------------------------------------------------
    final_pop = ea.evolve(generator=generator,
                          evaluator=evaluator,
                          bounder=EC.Bounder(kwargs['lower_bound'],
                                             kwargs['upper_bound']),
                          logger=logger,
                          **kwargs)

    # close file
    stats_file.close()
    ind_stats_file.close()

    # print best and finish
    print(('Best Solution: \n{0}'.format(str(max(final_pop)))))
    print("-" * 80)
    print("   Completed evolutionary algorithm parameter optimization   ")
    print("-" * 80)
    sys.exit()
Example #6
0
    def run(self):
        # -------------------------------------------------------------------------------
        # Grid Search optimization
        # -------------------------------------------------------------------------------
        if self.method in ['grid', 'list']:
            # create saveFolder
            import os, glob
            try:
                os.mkdir(self.saveFolder)
            except OSError:
                if not os.path.exists(self.saveFolder):
                    print ' Could not create', self.saveFolder

            # save Batch dict as json
            targetFile = self.saveFolder + '/' + self.batchLabel + '_batch.json'
            self.save(targetFile)

            # copy this batch script to folder
            targetFile = self.saveFolder + '/' + self.batchLabel + '_batchScript.py'
            os.system('cp ' + os.path.realpath(__file__) + ' ' + targetFile)

            # copy netParams source to folder
            netParamsSavePath = self.saveFolder + '/' + self.batchLabel + '_netParams.py'
            os.system('cp ' + self.netParamsFile + ' ' + netParamsSavePath)

            # import cfg
            cfgModuleName = os.path.basename(self.cfgFile).split('.')[0]
            cfgModule = imp.load_source(cfgModuleName, self.cfgFile)
            self.cfg = cfgModule.cfg
            self.cfg.checkErrors = False  # avoid error checking during batch

            # set initial cfg initCfg
            if len(self.initCfg) > 0:
                for paramLabel, paramVal in self.initCfg.iteritems():
                    self.setCfgNestedParam(paramLabel, paramVal)

            # iterate over all param combinations
            if self.method == 'grid':
                groupedParams = False
                ungroupedParams = False
                for p in self.params:
                    if 'group' not in p:
                        p['group'] = False
                        ungroupedParams = True
                    elif p['group'] == True:
                        groupedParams = True

                if ungroupedParams:
                    labelList, valuesList = zip(*[(p['label'], p['values'])
                                                  for p in self.params
                                                  if p['group'] == False])
                else:
                    labelList = ()
                    valuesList = ()

                labelList, valuesList = zip(*[(p['label'], p['values'])
                                              for p in self.params
                                              if p['group'] == False])
                valueCombinations = list(product(*(valuesList)))
                indexCombinations = list(
                    product(*[range(len(x)) for x in valuesList]))

                if groupedParams:
                    labelListGroup, valuesListGroup = zip(
                        *[(p['label'], p['values']) for p in self.params
                          if p['group'] == True])
                    valueCombGroups = izip(*(valuesListGroup))
                    indexCombGroups = izip(
                        *[range(len(x)) for x in valuesListGroup])
                    labelList = labelListGroup + labelList
                else:
                    valueCombGroups = [(0, )]  # this is a hack -- improve!
                    indexCombGroups = [(0, )]

            # if using pc bulletin board, initialize all workers
            if self.runCfg.get('type', None) == 'mpi_bulletin':
                for iworker in range(int(pc.nhost())):
                    pc.runworker()

            #if 1:
            #for iComb, pComb in zip(indexCombinations, valueCombinations):

            for iCombG, pCombG in zip(indexCombGroups, valueCombGroups):
                for iCombNG, pCombNG in zip(indexCombinations,
                                            valueCombinations):
                    if groupedParams:  # temporary hack - improve
                        iComb = iCombG + iCombNG
                        pComb = pCombG + pCombNG

                    else:
                        iComb = iCombNG
                        pComb = pCombNG

                    print iComb, pComb

                    for i, paramVal in enumerate(pComb):
                        paramLabel = labelList[i]
                        self.setCfgNestedParam(paramLabel, paramVal)

                        print str(paramLabel) + ' = ' + str(paramVal)

                    # set simLabel and jobName
                    simLabel = self.batchLabel + ''.join(
                        [''.join('_' + str(i)) for i in iComb])
                    jobName = self.saveFolder + '/' + simLabel

                    # skip if output file already exists
                    if self.runCfg.get('skip',
                                       False) and glob.glob(jobName + '.json'):
                        print 'Skipping job %s since output file already exists...' % (
                            jobName)
                    elif self.runCfg.get(
                            'skipCfg',
                            False) and glob.glob(jobName + '_cfg.json'):
                        print 'Skipping job %s since cfg file already exists...' % (
                            jobName)
                    elif self.runCfg.get(
                            'skipCustom',
                            None) and glob.glob(jobName +
                                                self.runCfg['skipCustom']):
                        print 'Skipping job %s since %s file already exists...' % (
                            jobName, self.runCfg['skipCustom'])
                    else:
                        # save simConfig json to saveFolder
                        self.cfg.simLabel = simLabel
                        self.cfg.saveFolder = self.saveFolder
                        cfgSavePath = self.saveFolder + '/' + simLabel + '_cfg.json'
                        self.cfg.save(cfgSavePath)

                        # hpc torque job submission
                        if self.runCfg.get('type', None) == 'hpc_torque':

                            # read params or set defaults
                            sleepInterval = self.runCfg.get('sleepInterval', 1)
                            sleep(sleepInterval)

                            nodes = self.runCfg.get('nodes', 1)
                            ppn = self.runCfg.get('ppn', 1)
                            script = self.runCfg.get('script', 'init.py')
                            mpiCommand = self.runCfg.get(
                                'mpiCommand', 'mpiexec')
                            walltime = self.runCfg.get('walltime', '00:30:00')
                            queueName = self.runCfg.get('queueName', 'default')
                            nodesppn = 'nodes=%d:ppn=%d' % (nodes, ppn)
                            custom = self.runCfg.get('custom', '')
                            numproc = nodes * ppn

                            command = '%s -np %d nrniv -python -mpi %s simConfig=%s netParams=%s' % (
                                mpiCommand, numproc, script, cfgSavePath,
                                netParamsSavePath)

                            jobString = """#!/bin/bash 
#PBS -N %s
#PBS -l walltime=%s
#PBS -q %s
#PBS -l %s
#PBS -o %s.run
#PBS -e %s.err
%s
cd $PBS_O_WORKDIR
echo $PBS_O_WORKDIR
%s
                            """ % (jobName, walltime, queueName, nodesppn,
                                   jobName, jobName, custom, command)

                            # Send job_string to qsub
                            print 'Submitting job ', jobName
                            print jobString + '\n'

                            batchfile = '%s.pbs' % (jobName)
                            with open(batchfile, 'w') as text_file:
                                text_file.write("%s" % jobString)

                            proc = Popen(['qsub', batchfile],
                                         stderr=PIPE,
                                         stdout=PIPE
                                         )  # Open a pipe to the qsub command.
                            (output, input) = (proc.stdin, proc.stdout)

                        # hpc torque job submission
                        elif self.runCfg.get('type', None) == 'hpc_slurm':

                            # read params or set defaults
                            sleepInterval = self.runCfg.get('sleepInterval', 1)
                            sleep(sleepInterval)

                            allocation = self.runCfg.get(
                                'allocation', 'csd403')  # NSG account
                            nodes = self.runCfg.get('nodes', 1)
                            coresPerNode = self.runCfg.get('coresPerNode', 1)
                            email = self.runCfg.get('email', '[email protected]')
                            folder = self.runCfg.get('folder', '.')
                            script = self.runCfg.get('script', 'init.py')
                            mpiCommand = self.runCfg.get('mpiCommand', 'ibrun')
                            walltime = self.runCfg.get('walltime', '00:30:00')
                            reservation = self.runCfg.get('reservation', None)
                            custom = self.runCfg.get('custom', '')
                            if reservation:
                                res = '#SBATCH --res=%s' % (reservation)
                            else:
                                res = ''

                            numproc = nodes * coresPerNode
                            command = '%s -np %d nrniv -python -mpi %s simConfig=%s netParams=%s' % (
                                mpiCommand, numproc, script, cfgSavePath,
                                netParamsSavePath)

                            jobString = """#!/bin/bash 
#SBATCH --job-name=%s
#SBATCH -A %s
#SBATCH -t %s
#SBATCH --nodes=%d
#SBATCH --ntasks-per-node=%d
#SBATCH -o %s.run
#SBATCH -e %s.err
#SBATCH --mail-user=%s
#SBATCH --mail-type=end
%s
%s

source ~/.bashrc
cd %s
%s
wait
                            """ % (simLabel, allocation, walltime, nodes,
                                   coresPerNode, jobName, jobName, email, res,
                                   custom, folder, command)

                            # Send job_string to qsub
                            print 'Submitting job ', jobName
                            print jobString + '\n'

                            batchfile = '%s.sbatch' % (jobName)
                            with open(batchfile, 'w') as text_file:
                                text_file.write("%s" % jobString)

                            #subprocess.call
                            proc = Popen(['sbatch', batchfile],
                                         stdin=PIPE,
                                         stdout=PIPE
                                         )  # Open a pipe to the qsub command.
                            (output, input) = (proc.stdin, proc.stdout)

                        # run mpi jobs directly e.g. if have 16 cores, can run 4 jobs * 4 cores in parallel
                        # eg. usage: python batch.py
                        elif self.runCfg.get('type', None) == 'mpi_direct':
                            jobName = self.saveFolder + '/' + simLabel
                            print 'Running job ', jobName
                            cores = self.runCfg.get('cores', 1)
                            folder = self.runCfg.get('folder', '.')
                            script = self.runCfg.get('script', 'init.py')
                            mpiCommand = self.runCfg.get('mpiCommand', 'ibrun')

                            command = '%s -np %d nrniv -python -mpi %s simConfig=%s netParams=%s' % (
                                mpiCommand, cores, script, cfgSavePath,
                                netParamsSavePath)

                            print command + '\n'
                            proc = Popen(command.split(' '),
                                         stdout=open(jobName + '.run', 'w'),
                                         stderr=open(jobName + '.err', 'w'))
                            #print proc.stdout.read()

                        # pc bulletin board job submission (master/slave) via mpi
                        # eg. usage: mpiexec -n 4 nrniv -mpi batch.py
                        elif self.runCfg.get('type', None) == 'mpi_bulletin':
                            jobName = self.saveFolder + '/' + simLabel
                            print 'Submitting job ', jobName
                            # master/slave bulletin board schedulling of jobs
                            pc.submit(runJob,
                                      self.runCfg.get('script', 'init.py'),
                                      cfgSavePath, netParamsSavePath)

                    sleep(1)  # avoid saturating scheduler
            print "-" * 80
            print "   Finished submitting jobs for grid parameter exploration   "
            print "-" * 80

        # -------------------------------------------------------------------------------
        # Evolutionary optimization
        # -------------------------------------------------------------------------------
        elif self.method == 'evol':
            import sys
            import inspyred.ec as EC

            # -------------------------------------------------------------------------------
            # Evolutionary optimization: Parallel evaluation
            # -------------------------------------------------------------------------------
            def evaluator(candidates, args):
                import os
                import signal
                global ngen
                ngen += 1
                total_jobs = 0

                # options slurm, mpi
                type = args.get('type', 'mpi_direct')

                # paths to required scripts
                script = args.get('script', 'init.py')
                netParamsSavePath = args.get('netParamsSavePath')
                genFolderPath = self.saveFolder + '/gen_' + str(ngen)

                # mpi command setup
                nodes = args.get('nodes', 1)
                paramLabels = args.get('paramLabels', [])
                coresPerNode = args.get('coresPerNode', 1)
                mpiCommand = args.get('mpiCommand', 'ibrun')
                numproc = nodes * coresPerNode

                # slurm setup
                custom = args.get('custom', '')
                folder = args.get('folder', '.')
                email = args.get('email', '[email protected]')
                walltime = args.get('walltime', '00:01:00')
                reservation = args.get('reservation', None)
                allocation = args.get('allocation', 'csd403')  # NSG account

                # fitness function
                fitnessFunc = args.get('fitnessFunc')
                fitnessFuncArgs = args.get('fitnessFuncArgs')
                defaultFitness = args.get('defaultFitness')

                # read params or set defaults
                sleepInterval = args.get('sleepInterval', 0.2)

                # create folder if it does not exist
                createFolder(genFolderPath)

                # remember pids and jobids in a list
                pids = []
                jobids = {}

                # create a job for each candidate
                for candidate_index, candidate in enumerate(candidates):
                    # required for slurm
                    sleep(sleepInterval)

                    # name and path
                    jobName = "gen_" + str(ngen) + "_cand_" + str(
                        candidate_index)
                    jobPath = genFolderPath + '/' + jobName

                    # modify cfg instance with candidate values
                    for label, value in zip(paramLabels, candidate):
                        self.setCfgNestedParam(label, value)
                        print 'set %s=%s' % (label, value)

                    #self.setCfgNestedParam("filename", jobPath)
                    self.cfg.simLabel = jobName
                    self.cfg.saveFolder = genFolderPath

                    # save cfg instance to file
                    cfgSavePath = jobPath + '_cfg.json'
                    self.cfg.save(cfgSavePath)

                    if type == 'mpi_bulletin':
                        # ----------------------------------------------------------------------
                        # MPI master-slaves
                        # ----------------------------------------------------------------------
                        pc.submit(runEvolJob, script, cfgSavePath,
                                  netParamsSavePath, jobPath)
                        print '-' * 80

                    else:
                        # ----------------------------------------------------------------------
                        # MPI job commnand
                        # ----------------------------------------------------------------------
                        command = '%s -np %d nrniv -python -mpi %s simConfig=%s netParams=%s ' % (
                            mpiCommand, numproc, script, cfgSavePath,
                            netParamsSavePath)

                        # ----------------------------------------------------------------------
                        # run on local machine with <nodes*coresPerNode> cores
                        # ----------------------------------------------------------------------
                        if type == 'mpi_direct':
                            executer = '/bin/bash'
                            jobString = bashTemplate('mpi_direct') % (
                                custom, folder, command)

                        # ----------------------------------------------------------------------
                        # run on HPC through slurm
                        # ----------------------------------------------------------------------
                        elif type == 'hpc_slurm':
                            executer = 'sbatch'
                            res = '#SBATCH --res=%s' % (
                                reservation) if reservation else ''
                            jobString = bashTemplate('hpc_slurm') % (
                                jobName, allocation, walltime, nodes,
                                coresPerNode, jobPath, jobPath, email, res,
                                custom, folder, command)

                        # ----------------------------------------------------------------------
                        # run on HPC through PBS
                        # ----------------------------------------------------------------------
                        elif type == 'hpc_torque':
                            executer = 'qsub'
                            queueName = args.get('queueName', 'default')
                            nodesppn = 'nodes=%d:ppn=%d' % (nodes,
                                                            coresPerNode)
                            jobString = bashTemplate('hpc_torque') % (
                                jobName, walltime, queueName, nodesppn,
                                jobPath, jobPath, custom, command)

                        # ----------------------------------------------------------------------
                        # save job and run
                        # ----------------------------------------------------------------------
                        print 'Submitting job ', jobName
                        print jobString
                        print '-' * 80
                        # save file
                        batchfile = '%s.sbatch' % (jobPath)
                        with open(batchfile, 'w') as text_file:
                            text_file.write("%s" % jobString)

                        #with open(jobPath+'.run', 'a+') as outf, open(jobPath+'.err', 'w') as errf:
                        with open(jobPath + '.jobid',
                                  'w') as outf, open(jobPath + '.err',
                                                     'w') as errf:
                            pids.append(
                                Popen([executer, batchfile],
                                      stdout=outf,
                                      stderr=errf,
                                      preexec_fn=os.setsid).pid)
                        #proc = Popen(command.split([executer, batchfile]), stdout=PIPE, stderr=PIPE)
                        sleep(0.1)
                        #read = proc.stdout.read()
                        with open(jobPath + '.jobid', 'r') as outf:
                            read = outf.readline()
                        print read
                        if len(read) > 0:
                            jobid = int(read.split()[-1])
                            jobids[candidate_index] = jobid
                        print 'jobids', jobids
                    total_jobs += 1
                    sleep(0.1)

                # ----------------------------------------------------------------------
                # gather data and compute fitness
                # ----------------------------------------------------------------------
                if type == 'mpi_bulletin':
                    # wait for pc bulletin board jobs to finish
                    try:
                        while pc.working():
                            sleep(1)
                        #pc.done()
                    except:
                        pass

                num_iters = 0
                jobs_completed = 0
                fitness = [None for cand in candidates]
                # print outfilestem
                print "Waiting for jobs from generation %d/%d ..." % (
                    ngen, args.get('max_generations'))
                # print "PID's: %r" %(pids)
                # start fitness calculation
                while jobs_completed < total_jobs:
                    unfinished = [
                        i for i, x in enumerate(fitness) if x is None
                    ]
                    for candidate_index in unfinished:
                        try:  # load simData and evaluate fitness
                            jobNamePath = genFolderPath + "/gen_" + str(
                                ngen) + "_cand_" + str(candidate_index)
                            if os.path.isfile(jobNamePath + '.json'):
                                with open('%s.json' % (jobNamePath)) as file:
                                    simData = json.load(file)['simData']
                                fitness[candidate_index] = fitnessFunc(
                                    simData, **fitnessFuncArgs)
                                jobs_completed += 1
                                print '  Candidate %d fitness = %.1f' % (
                                    candidate_index, fitness[candidate_index])
                        except Exception as e:
                            # print
                            err = "There was an exception evaluating candidate %d:" % (
                                candidate_index)
                            print("%s \n %s" % (err, e))
                            #pass
                            #print 'Error evaluating fitness of candidate %d'%(candidate_index)
                    num_iters += 1
                    print 'completed: %d' % (jobs_completed)
                    if num_iters >= args.get('maxiter_wait', 5000):
                        print "Max iterations reached, the %d unfinished jobs will be canceled and set to default fitness" % (
                            len(unfinished))
                        for canditade_index in unfinished:
                            fitness[canditade_index] = defaultFitness
                            jobs_completed += 1
                            if 'scancelUser' in kwargs:
                                os.system('scancel -u %s' %
                                          (kwargs['scancelUser']))
                            else:
                                os.system(
                                    'scancel %d' % (jobids[candidate_index])
                                )  # terminate unfinished job (resubmitted jobs not terminated!)
                    sleep(args.get('time_sleep', 1))

                # kill all processes
                if type == 'mpi_bulletin':
                    try:
                        with open("./pids.pid",
                                  'r') as file:  # read pids for mpi_bulletin
                            pids = [
                                int(i) for i in file.read().split(' ')[:-1]
                            ]

                        with open("./pids.pid", 'w') as file:  # delete content
                            pass
                        for pid in pids:
                            try:
                                os.killpg(os.getpgid(pid), signal.SIGTERM)
                            except:
                                pass
                    except:
                        pass
                # don't want to to this for hpcs since jobs are running on compute nodes not master
                # else:
                #     try:
                #         for pid in pids: os.killpg(os.getpgid(pid), signal.SIGTERM)
                #     except:
                #         pass
                # return
                print "-" * 80
                print "  Completed a generation  "
                print "-" * 80
                return fitness

            # -------------------------------------------------------------------------------
            # Evolutionary optimization: Generation of first population candidates
            # -------------------------------------------------------------------------------
            def generator(random, args):
                # generate initial values for candidates
                return [
                    random.uniform(l, u) for l, u in zip(
                        args.get('lower_bound'), args.get('upper_bound'))
                ]

            # -------------------------------------------------------------------------------
            # Mutator
            # -------------------------------------------------------------------------------
            @EC.variators.mutator
            def nonuniform_bounds_mutation(random, candidate, args):
                """Return the mutants produced by nonuniform mutation on the candidates.
                .. Arguments:
                   random -- the random number generator object
                   candidate -- the candidate solution
                   args -- a dictionary of keyword arguments
                Required keyword arguments in args:
                Optional keyword arguments in args:
                - *mutation_strength* -- the strength of the mutation, where higher
                  values correspond to greater variation (default 1)
                """
                lower_bound = args.get('lower_bound')
                upper_bound = args.get('upper_bound')
                strength = args.setdefault('mutation_strength', 1)
                mutant = copy(candidate)
                for i, (c, lo, hi) in enumerate(
                        zip(candidate, lower_bound, upper_bound)):
                    if random.random() <= 0.5:
                        new_value = c + (hi - c) * (1.0 -
                                                    random.random()**strength)
                    else:
                        new_value = c - (c - lo) * (1.0 -
                                                    random.random()**strength)
                    mutant[i] = new_value

                return mutant

            # -------------------------------------------------------------------------------
            # Evolutionary optimization: Main code
            # -------------------------------------------------------------------------------
            import os
            # create main sim directory and save scripts
            self.saveScripts()

            global ngen
            ngen = -1

            # log for simulation
            logger = logging.getLogger('inspyred.ec')
            logger.setLevel(logging.DEBUG)
            file_handler = logging.FileHandler(self.saveFolder +
                                               '/inspyred.log',
                                               mode='a')
            file_handler.setLevel(logging.DEBUG)
            formatter = logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            file_handler.setFormatter(formatter)
            logger.addHandler(file_handler)

            # create randomizer instance
            rand = Random()
            rand.seed(self.seed)

            # create file handlers for observers
            stats_file, ind_stats_file = self.openFiles2SaveStats()

            # gather **kwargs
            kwargs = {'cfg': self.cfg}
            kwargs['num_inputs'] = len(self.params)
            kwargs['paramLabels'] = [x['label'] for x in self.params]
            kwargs['lower_bound'] = [x['values'][0] for x in self.params]
            kwargs['upper_bound'] = [x['values'][1] for x in self.params]
            kwargs['statistics_file'] = stats_file
            kwargs['individuals_file'] = ind_stats_file
            kwargs[
                'netParamsSavePath'] = self.saveFolder + '/' + self.batchLabel + '_netParams.py'

            for key, value in self.evolCfg.iteritems():
                kwargs[key] = value
            if not 'maximize' in kwargs: kwargs['maximize'] = False

            for key, value in self.runCfg.iteritems():
                kwargs[key] = value

            # if using pc bulletin board, initialize all workers
            if self.runCfg.get('type', None) == 'mpi_bulletin':
                for iworker in range(int(pc.nhost())):
                    pc.runworker()

            ####################################################################
            #                       Evolution strategy
            ####################################################################
            # Custom algorithm based on Krichmar's params
            if self.evolCfg['evolAlgorithm'] == 'krichmarCustom':
                ea = EC.EvolutionaryComputation(rand)
                ea.selector = EC.selectors.tournament_selection
                ea.variator = [
                    EC.variators.uniform_crossover, nonuniform_bounds_mutation
                ]
                ea.replacer = EC.replacers.generational_replacement
                if not 'tournament_size' in kwargs:
                    kwargs['tournament_size'] = 2
                if not 'num_selected' in kwargs:
                    kwargs['num_selected'] = kwargs['pop_size']

            # Genetic
            elif self.evolCfg['evolAlgorithm'] == 'genetic':
                ea = EC.GA(rand)

            # Evolution Strategy
            elif self.evolCfg['evolAlgorithm'] == 'evolutionStrategy':
                ea = EC.ES(rand)

            # Simulated Annealing
            elif self.evolCfg['evolAlgorithm'] == 'simulatedAnnealing':
                ea = EC.SA(rand)

            # Differential Evolution
            elif self.evolCfg['evolAlgorithm'] == 'diffEvolution':
                ea = EC.DEA(rand)

            # Estimation of Distribution
            elif self.evolCfg['evolAlgorithm'] == 'estimationDist':
                ea = EC.EDA(rand)

            # Particle Swarm optimization
            elif self.evolCfg['evolAlgorithm'] == 'particleSwarm':
                from inspyred import swarm
                ea = swarm.PSO(rand)
                ea.topology = swarm.topologies.ring_topology

            # Ant colony optimization (requires components)
            elif self.evolCfg['evolAlgorithm'] == 'antColony':
                from inspyred import swarm
                ea = swarm.ACS(rand)
                ea.topology = swarm.topologies.ring_topology

            else:
                raise ValueError("%s is not a valid strategy" %
                                 (self.evolCfg['evolAlgorithm']))
            ####################################################################
            ea.terminator = EC.terminators.generation_termination
            ea.observer = [
                EC.observers.stats_observer, EC.observers.file_observer
            ]
            # -------------------------------------------------------------------------------
            # Run algorithm
            # -------------------------------------------------------------------------------
            final_pop = ea.evolve(generator=generator,
                                  evaluator=evaluator,
                                  bounder=EC.Bounder(kwargs['lower_bound'],
                                                     kwargs['upper_bound']),
                                  logger=logger,
                                  **kwargs)

            # close file
            stats_file.close()
            ind_stats_file.close()

            # print best and finish
            print('Best Solution: \n{0}'.format(str(max(final_pop))))
            print "-" * 80
            print "   Completed evolutionary algorithm parameter optimization   "
            print "-" * 80
            sys.exit()
Example #7
0
def GA():
    """Starts the optimization with the GA algorithm."""   

    begin = time.time()
    # initialize random generator with system time
    rand = random.Random()
    rand.seed()

    # original start individual of the input data
    global start_individual

    # generate the original start individual from the input data
    # return it including the non static land use indices
    start_individual, nonstatic_elements = generate_genom(max_range, file_HRU,cfg.mapConfig.file_ASCII_map, 
                                      cfg.mapConfig.file_transformation, cfg.mapConfig.file_ID_map, 
                                      cfg.mapConfig.four_neighbours)

    if len(start_individual) == 0:
        msg = "Error: The generated start individual has no elements."
        WriteLogMsg(msg) 
        raise SystemError("Error: The generated start individual has no elements.")
        close_window

    # determine that 'Bounder' conditions of candidates are equal to  
    # the integer values of the non static land use indices
    bounder_discrete = nonstatic_elements

    # initialize inspyred log files  
    stats_file,individ_file = fh.init_inspyred_logfiles()  

    # initialize and run GA
    ea = ec.GA(rand)
    # public attributes
    # GA is predefined with rank_selection
    if cfg.ea.selector != 'rank_selection':
        exec ("%s%s" % ('ea.selector = ', fh.preparing_attribute('selector',cfg.ea.selector)))
        msg = 'Selector of the optimization algorithm changed to: %s' % cfg.ea.selector
        WriteLogMsg(msg)
    # GA is predefined with generational_replacement
    if cfg.ea.replacer != 'generational_replacement':
        exec ("%s%s" % ('ea.replacer = ', fh.preparing_attribute('replacer',cfg.ea.replacer)))
        msg = 'Replacer of the optimization algorithm changed to: %s' % cfg.ea.replacer
        WriteLogMsg(msg)
    # specify how the new candidates should be varied
    # GA is predefined with n_point_crossover,bit_flip_mutation as variators
    if cfg.ea.variator != 'n_point_crossover,bit_flip_mutation' and cfg.ea.variator != 'bit_flip_mutation,n_point_crossover':
        exec ("%s%s" % ('ea.variator = ', fh.preparing_attribute('variator',cfg.ea.variator)))         
        msg = 'Variator of the optimization algorithm changed to: %s' % cfg.ea.variator
        WriteLogMsg(msg)       
    # GA is predefined with num_selected = pop_size
    if cfg.ea.num_selected != cfg.ea.pop_size:
        msg = 'Num_selected of the optimization algorithm changed to: %s' % cfg.ea.num_selected
        WriteLogMsg(msg) 
    exec ("%s%s" % ('ea.migrator = ', fh.preparing_attribute('migrator',cfg.ea.migrator)))
    exec ("%s%s" % ('ea.archiver = ', fh.preparing_attribute('archiver',cfg.ea.archiver)))
    if cfg.ea.archiver != 'best_archiver':
        msg = 'Archiver of the optimization algorithm changed to: %s' % cfg.ea.archiver
        WriteLogMsg(msg)
    exec ("%s%s" % ('ea.observer = ', fh.preparing_attribute('observer',cfg.ea.observer)))         
    # specify when the optimization should terminate
    exec ("%s%s" % ('ea.terminator = ', fh.preparing_attribute('terminator',cfg.ea.terminator)))

    # run optimization, when finished final_pop holds the results
    final_pop = ea.evolve(generator = generate_parameter, 
                    # evaluate is the function to start external models
                    # return results for the optimization algorithm
                    evaluator = evaluate, 
                    # define population size
                    pop_size = cfg.ea.pop_size,
                    # maximize or minimize the problem
                    maximize = cfg.ea.maximize, 
                    # bound the parameters to an interval
                    # choose integer values between 1 and max_range in this case
                    bounder = ec.DiscreteBounder(bounder_discrete), 
                    # minimum population diversity allowed (when using diversity_termination default 0.001)
                    min_diversity = cfg.ea.min_diversity,
                    # maximum number of evaluations (default pop_size) 
                    max_evaluations = cfg.ea.max_evaluations,
                    # maximum number of generations  
                    max_generations = cfg.ea.max_generations, 
                    # number of elites to consider (default 0)                    
                    num_elites = cfg.ea.num_elites,
                    # number of individuals to be selected (default NSGA2 pop_size)
                    num_selected = cfg.ea.num_selected,
                    # tournament size (default NSGA2 2) 
                    tournament_size = cfg.ea.tournament_size,
                    # the rate at which crossover is performed (default 1.0)
                    crossover_rate = cfg.ea.crossover_rate,
                    # mutation rate
                    mutation_rate = cfg.ea.mutation_rate,
                    # number of crossover points used (default 1)
                    num_crossover_points = cfg.ea.num_crossover_points,  
                    # a positive integer representing the number of 
                    # closest solutions to consider as a “crowd” (default 2)
                    crowding_distance = cfg.ea.crowding_distance,  
                    # statistic file
                    statistics_file = stats_file,
                    # individuals file
                    individuals_file = individ_file)                     

    # read out the best individuals
    final_arc = ea.archive

    # for constrained_tournament_selection: 
    # create a copy of final_arc only with feasible individuals (for csv file with best feasible solutions)
    if 'constrained_tournament_selection' in cfg.ea.selector:
        final_arc_feasible = [] 

    end = time.time()
    WriteLogMsg("The optimization process needed %d seconds." %(end-begin))

    msg = 'Best Solutions: \n'
    WriteLogMsg(msg)
    
    # save the map as ascii file in output folder

    f_count=1
    for f in final_arc:
        # for constrained_tournament_selection: with information if individual is infeasible
        # and copy feasible solutions in final_arc_feasible
        if 'constrained_tournament_selection' in cfg.ea.selector:
            if individual_filter(f.candidate) == False:
                WriteLogMsg("(infeasible) %s" % f)
                # save the map as ascii file in output folder
                if file_HRU == 'None' or (file_HRU != 'None' and cfg.mapConfig.file_ID_map != 'None'):
                    transform_individual_ascii_map(f.candidate,False,f_count,None,None,None,False)
            else:
                WriteLogMsg("%s" % f)
                # save the map as ascii file in output folder
                if file_HRU == 'None' or (file_HRU != 'None' and cfg.mapConfig.file_ID_map != 'None'):
                    transform_individual_ascii_map(f.candidate,False,f_count)
                final_arc_feasible.append(f)
        else:
            WriteLogMsg("%s" % f)
            # save the map as ascii file in output folder
            if file_HRU == 'None' or (file_HRU != 'None' and cfg.mapConfig.file_ID_map != 'None'):
                transform_individual_ascii_map(f.candidate,False,f_count)
        f_count += 1

    if cfg.ea.maximize == 'True':
        if 'constrained_tournament_selection' in cfg.ea.selector and individual_filter(f.candidate) == False:
            WriteLogMsg("\nFinal infeasible individual: %s, [%f]" % (max(final_pop).candidate,max(final_pop).fitness))
        else:
            WriteLogMsg("\nFinal individual: %s, [%f]" % (max(final_pop).candidate,max(final_pop).fitness))
    else:
        if 'constrained_tournament_selection' in cfg.ea.selector and individual_filter(f.candidate) == False:
            WriteLogMsg("\nFinal infeasible individual: %s, [%f]" % (min(final_pop).candidate,min(final_pop).fitness))
        else:
            WriteLogMsg("\nFinal individual: %s, [%f]" % (min(final_pop).candidate,min(final_pop).fitness))

    # save the map as ascii file in output folder

    # log the best solutions in a csv file
    fh.save_best_solutions(final_arc,1) 

    # for constrained_tournament_selection: log the best feasible solutions in a csv file
    if 'constrained_tournament_selection' in cfg.ea.selector:
        fh.save_best_solutions(final_arc_feasible,1)