def element(cls, n, unbound=False): """returns value for element N in the series""" #assert type(n) is IntType inRange(n, 46, unbound) return cls._h.element(n)
def elementIt(cls, n, unbound=False): inRange(n, 46, unbound) return cls._h.elementIt(n) # ##@class A005248 # #sequence [A005248](https://oeis.org/A005248) # # # class A005248: # @classmethod # def element(cls, n, unbound = False): # return Lucas.element(2 * n) # @classmethod # def elementIt(cls, n, unbound = False): # return cls._h.elementIt(2 * n) # ##@class A002878 # #sequence [A002878](https://oeis.org/A002878) # # # class A002878: # @classmethod # def element(cls, n, unbound = False): # return Lucas.element(2 * n + 1) # @classmethod # def elementIt(cls, n, unbound = False): # return Lucas.elementIt(2 * n + 1) # ##@class A240926 # #sequence [A240926](https://oeis.org/A240926) # # #class A240926(Base): """a(n) = 2 + L(2*n)"""
def element(cls, n, unbound=False): inRange(n, 9, unbound) if n == 0: return 1 elif n == 1: return 7 return 6 * cls.element(n - 1) - cls.element(n - 2)
def element(cls, N, unbound=False): inRange(N, 249, unbound) #recursive type context too complex for C(++) if N == 0: return 1 f = cls.element(N - 1) return N - Male.element(f)
def element(cls, N, unbound=False): inRange(N, 249, unbound) if N == 0: return 0 m = cls.element(N - 1) return N - Female.element(m)
def element(cls, n, unbound=False): """recursive function which returns the value of !n""" #assert type(n) is IntType, 'arg n must be a non-negative integer value' inRange(n, 20, unbound) if n == 0 or n == 1: return 1 return n * cls.element(n - 1)
def element(cls, N, unbound=False): inRange(N, 251, unbound) if N == 1 or N == 2: return 1 next = cls.element(N - 1) n2Val = cls.element(N - 2) return cls.element(next) + cls.element(N - n2Val - 1)
def element(cls, N, unbound=False): #f(N) = N - h(h(h(N-1))) inRange(N, 166, unbound) if N == 0: return 0 val = cls.element(N - 1) h0 = cls.element(val) return N - cls.element(h0)
def element(cls, N, unbound=False): #static_assert(N <= 249, ""); inRange( N, 249, unbound ) #recursive type context too complex in C, could potentially blow stack if N == 0: return 0 val = cls.element(N - 1) return N - cls.element(val)
def elementIt(cls, n, unbound=False): """iterative function which returns the value of !n""" #assert type(n) is IntType, 'arg n must be a non-negative integer value' inRange(n, 20, unbound) if n == 0 or n == 1: return 1 ret = 2 for i in range(2, n): #print(ret) #print(i) ret *= (i + 1) return ret #class Prime #@class Double #double factorial N!!, series [A006882](https://oeis.org/A006882) # #class Double: # @classmethod # def elementIt(cls, n, unbound = False): #inRange(n, 16) #return Factorial.element(Factorial.element(n)) # @classmethod # def elementIt(cls, n, unbound = False): #inRange(n, 16) #return Factorial.elementIt(factorial.elementIt(n)) #def _set(n): # """arg n: number of elemenets in the sequence # lists can have repeated values however, # sets only contain unique sequences of values # therefor it is convenient to construct sets aswell # for additional functionality""" # return set(_list(n)) #[f for f in genFib(n)]) ## #def _frozenSet(n): # return frozenset(_list(n))
def element(cls, n, unbound=False): inRange(n, 46, unbound) return cls._h.element(n)
def element(cls, n, unbound=False): #assert type(n) is IntType inRange(n, 33, unbound) return cls._h.element(n)
def elementIt(cls, n, unbound=False): inRange(n, 24, unbound) f = Fibonacci.elementIt(n) return f * f