def lsq_normalize(img_dir, mask_dir=None, output_dir=None, write_to_disk=True):
    """
    normalize intensities of a set of MR images by minimizing the squared distance
    between CSF, GM, and WM means within the set

    Args:
        img_dir (str): directory containing MR images
        mask_dir (str): directory containing masks for MR images
        output_dir (str): directory to save images if you do not want them saved in
            same directory as data_dir
        write_to_disk (bool): write the normalized data to disk or nah

    Returns:
        normalized (np.ndarray): last normalized image from img_dir
    """
    input_files = io.glob_nii(img_dir)
    if output_dir is None:
        out_fns = [None] * len(input_files)
    else:
        out_fns = []
        for fn in input_files:
            _, base, ext = io.split_filename(fn)
            out_fns.append(os.path.join(output_dir, base + '_lsq' + ext))
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

    mask_files = [None] * len(
        input_files) if mask_dir is None else io.glob_nii(mask_dir)

    standard_tissue_means = None
    normalized = None
    for i, (img_fn, mask_fn,
            out_fn) in enumerate(zip(input_files, mask_files, out_fns)):
        _, base, _ = io.split_filename(img_fn)
        logger.info(
            'Transforming image {} to standard scale ({:d}/{:d})'.format(
                base, i + 1, len(input_files)))
        img = io.open_nii(img_fn)
        mask = io.open_nii(mask_fn) if mask_fn is not None else None
        tissue_mem = mask_util.fcm_class_mask(img, mask)
        if standard_tissue_means is None:
            csf_tissue_mask = find_tissue_mask(img, mask, tissue_type='csf')
            csf_normed_data = fcm_normalize(img, csf_tissue_mask).get_fdata()
            standard_tissue_means = calc_tissue_means(csf_normed_data,
                                                      tissue_mem)
            del csf_tissue_mask, csf_normed_data
        img_data = img.get_fdata()
        tissue_means = calc_tissue_means(img_data, tissue_mem)
        sf = find_scaling_factor(tissue_means, standard_tissue_means)
        logger.debug('Scaling factor for {}: {:0.3e}'.format(base, sf))
        normalized = nib.Nifti1Image(sf * img_data, img.affine, img.header)
        if write_to_disk:
            io.save_nii(normalized, out_fn, is_nii=True)

    return normalized
Example #2
0
def csf_mask(img,
             brain_mask,
             contrast='t1',
             csf_thresh=0.9,
             return_prob=False,
             mrf=0.25,
             use_fcm=False):
    """
    create a binary mask of csf using atropos (FMM) segmentation
    of a T1-w image

    Args:
        img (ants.core.ants_image.ANTsImage or nibabel.nifti1.Nifti1Image): target img
        brain_mask (ants.core.ants_image.ANTsImage or nibabel.nifti1.Nifti1Image): brain mask for img
        contrast (str): contrast of the img (e.g., t1, t2, or flair)
        csf_thresh (float): membership threshold to count as CSF
        return_prob (bool): if true, then return membership values
            instead of binary (i.e., thresholded membership) mask
        mrf (float): markov random field parameter
            (i.e., smoothness parameter, higher is a smoother segmentation)
        use_fcm (bool): use FCM segmentation instead of atropos (may be less accurate)
            cannot use return_prob flag
    Returns:
        csf (np.ndarray): binary CSF mask for img
    """
    # convert nibabel to antspy format images (to do atropos segmentation)
    if hasattr(img, 'get_data') and hasattr(brain_mask,
                                            'get_data') and not use_fcm:
        img = nibabel_to_ants(img)
        brain_mask = nibabel_to_ants(brain_mask)
    if not use_fcm:
        res = img.kmeans_segmentation(3, kmask=brain_mask, mrf=mrf)
        avg_intensity = [
            np.mean(img.numpy()[prob_img.numpy() > 0.5])
            for prob_img in res['probabilityimages']
        ]
        csf_arg = np.argmin(avg_intensity) if contrast.lower() in (
            't1', 'flair') else np.argmax(avg_intensity)
        csf = res['probabilityimages'][csf_arg].numpy()
        if not return_prob:
            csf = (csf > csf_thresh).astype(np.float32)
    else:
        if hasattr(img, 'numpy') and hasattr(brain_mask, 'numpy'):
            img = to_nibabel(img)
            brain_mask = to_nibabel(brain_mask)
        seg = mask.fcm_class_mask(img, brain_mask, hard_seg=True)
        avg_intensity = [
            np.mean(img.get_fdata()[seg == i]) for i in range(1, 4)
        ]
        csf_arg = np.argmin(avg_intensity) if contrast.lower() in (
            't1', 'flair') else np.argmax(avg_intensity)
        csf = (seg == (csf_arg + 1)).astype(np.float32)
    return csf
def main(args=None):
    args = arg_parser().parse_args(args)
    if args.verbosity == 1:
        level = logging.getLevelName('INFO')
    elif args.verbosity >= 2:
        level = logging.getLevelName('DEBUG')
    else:
        level = logging.getLevelName('WARNING')
    logging.basicConfig(
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        level=level)
    logger = logging.getLogger(__name__)
    try:
        if not os.path.isdir(args.img_dir):
            raise ValueError(
                '(-i / --img-dir) argument needs to be a directory of NIfTI images.'
            )
        if args.mask_dir is not None:
            if not os.path.isdir(args.mask_dir):
                raise ValueError(
                    '(-m / --mask-dir) argument needs to be a directory of NIfTI images.'
                )

        img_fns = io.glob_nii(args.img_dir)
        if args.mask_dir is not None:
            mask_fns = io.glob_nii(args.mask_dir)
        else:
            mask_fns = [None] * len(img_fns)
        if not os.path.exists(args.output_dir):
            logger.info('Making Output Directory: {}'.format(args.output_dir))
            os.mkdir(args.output_dir)
        hard_seg = not args.memberships
        for i, (img_fn, mask_fn) in enumerate(zip(img_fns, mask_fns), 1):
            _, base, _ = io.split_filename(img_fn)
            logger.info('Creating Mask for Image: {}, ({:d}/{:d})'.format(
                base, i, len(img_fns)))
            img = io.open_nii(img_fn)
            mask = io.open_nii(mask_fn)
            tm = fcm_class_mask(img, mask,
                                hard_seg) if not args.gmm else gmm_class_mask(
                                    img, mask, 't1', False, hard_seg)
            tissue_mask = os.path.join(args.output_dir, base + '_tm')
            if args.memberships:
                classes = ('csf', 'gm', 'wm')
                for j, c in enumerate(classes):
                    io.save_nii(img, tissue_mask + '_' + c + '.nii.gz', tm[...,
                                                                           j])
            else:
                io.save_nii(img, tissue_mask + '.nii.gz', tm)
        return 0
    except Exception as e:
        logger.exception(e)
        return 1
Example #4
0
def find_wm_mask(img, brain_mask, threshold=0.8):
    """
    find WM mask using FCM with a membership threshold

    Args:
        img (nibabel.nifti1.Nifti1Image): target img
        brain_mask (nibabel.nifti1.Nifti1Image): brain mask for img
        threshold (float): membership threshold

    Returns:
        wm_mask (nibabel.nifti1.Nifti1Image): white matter mask for img
    """
    t1_mem = mask.fcm_class_mask(img, brain_mask)
    wm_mask = t1_mem[..., 2] > threshold
    wm_mask_nifti = nib.Nifti1Image(wm_mask, img.affine, img.header)
    return wm_mask_nifti
Example #5
0
def find_tissue_mask(img, brain_mask, threshold=0.8, tissue_type='wm'):
    """
    find tissue mask using FCM with a membership threshold

    Args:
        img (nibabel.nifti1.Nifti1Image): target img
        brain_mask (nibabel.nifti1.Nifti1Image): brain mask for img
        threshold (float): membership threshold
        tissue_type (str): find the mask of this tissue type (wm, gm, or csf)

    Returns:
        tissue_mask_nifti (nibabel.nifti1.Nifti1Image): tissue mask for img
    """
    tissue_to_int = {'csf': 0, 'gm': 1, 'wm': 2}
    t1_mem = mask.fcm_class_mask(img, brain_mask)
    tissue_mask = t1_mem[..., tissue_to_int[tissue_type]] > threshold
    tissue_mask_nifti = nib.Nifti1Image(tissue_mask, img.affine, img.header)
    return tissue_mask_nifti
Example #6
0
 def test_fcm_mask(self):
     m = mask.fcm_class_mask(self.img, self.brain_mask, hard_seg=True)
     self.assertEqual(len(np.unique(m)), 4)