Example #1
0
    def test_read_proj_ds_tree(self):
        src_t = get_ds(self.inst2, trans(self.inst2))
        tgt_w = lang(self.inst2)
        aln   = get_trans_gloss_alignment(self.inst2)

        tgt_t = DepTree.fromstring("""
        (ROOT[0]
            (glaubst[2]
                (Was[1])
                (Du[3])
                (wer[4])
                (angerufen[5] (hat[6]))
            ))
        """, stype=DEPSTR_PTB)

        proj_t = project_ds(src_t, tgt_w, aln)

        self.assertTrue(proj_t.structurally_eq(tgt_t))
Example #2
0
def split_instances(instances, train=0, dev=0, test=0):
    """

    :type instances: list[RGIgt]
    """

    # -- 0) Initialize the counter to keep track of which word index
    #       is in which sentence.
    instances = list(instances)
    wc = WordCount()

    for i, inst in enumerate(instances):
        num_words = len(lang(inst))
        SPLIT_LOG.debug('{} words in sentence {} (id {})'.format(num_words, i, inst.id))
        wc.add(i, num_words)

    # -- 2) Figure out the number of words.
    num_train_words = round(train * wc.num_words)
    num_dev_words   = round(dev   * wc.num_words)
    num_test_words  = round(test  * wc.num_words)

    # -- 3) Get the word indices.
    train_word_index = num_train_words
    dev_word_index   = train_word_index + num_dev_words
    test_word_index  = dev_word_index   + num_test_words

    # -- 4) Figure out which sentence indices these refer to.
    train_sent_index = wc.get_snt_from_wordnum(train_word_index)
    dev_sent_index   = wc.get_snt_from_wordnum(dev_word_index)
    test_sent_index  = wc.get_snt_from_wordnum(test_word_index)

    # -- 4) Now, split up the data.

    train_instances = instances[0:train_sent_index]
    dev_instances   = instances[train_sent_index:dev_sent_index]
    test_instances  = instances[dev_sent_index:test_sent_index+1]

    # And return...
    return train_instances, dev_instances, test_instances
Example #3
0
def naacl_to_xigt(naacl_path):
    """
    Convert the NAACL format to XIGT.

    :param naacl_path:
    """
    content = open(naacl_path, 'r').read()

    # First, collect all the instances.
    instances = re.findall('Igt_id[\s\S]+?Q6.*Answer', content)

    xc = XigtCorpus()

    for instance_txt in instances:
        # id = re.search('Igt_id=([\S]+)', instance_txt).group(1)
        inst = Igt(id='i{}'.format(len(xc)))

        lang_raw, gloss_raw, trans_raw = instance_txt.split('\n')[1:4]

        # Now, create the raw tier...
        raw_tier = Tier(id=gen_tier_id(inst, 'r'), type='odin', attributes={STATE_ATTRIBUTE:RAW_STATE})
        raw_tier.append(Item(id=ask_item_id(raw_tier), text=lang_raw, attributes={ODIN_TAG_ATTRIBUTE:ODIN_LANG_TAG}))
        raw_tier.append(Item(id=ask_item_id(raw_tier), text=gloss_raw, attributes={ODIN_TAG_ATTRIBUTE:ODIN_GLOSS_TAG}))
        raw_tier.append(Item(id=ask_item_id(raw_tier), text=trans_raw, attributes={ODIN_TAG_ATTRIBUTE:ODIN_TRANS_TAG}))

        inst.append(raw_tier)
        xc.append(inst)

        # Generate the clean/normal tiers, but without any cleaning.
        generate_normal_tier(inst, clean=False)

        # Lang Dependency representation handling...
        lang_ds_str = re.search('Q6:([\s\S]+?)Q6:', instance_txt).group(1)
        lang_ds_lines = lang_ds_str.split('\n')[5:-3]

        try:
            lang_dt = parse_naacl_dep(lang(inst), lang_ds_lines)
            create_dt_tier(inst, lang_dt, lang(inst), parse_method=INTENT_POS_MANUAL)
        except TreeError as te:
            pass
        except IndexError as ie:
            pass

        # Eng DS handling...
        eng_ds_str = re.search('Q3:([\s\S]+?)Q3:', instance_txt).group(1)
        eng_ds_lines = eng_ds_str.split('\n')[2:-3]

        try:
            eng_dt = parse_naacl_dep(trans(inst), eng_ds_lines)
            create_dt_tier(inst, eng_dt, trans(inst), parse_method=INTENT_POS_MANUAL)
        except TreeError as te:
            pass
        except IndexError as ie:
            pass
        except ValueError as ve:
            pass

        # Add Alignment...
        biling_aln_str = re.search('Q5:([\s\S]+?)Q5:', instance_txt).group(1)
        biling_aln_lines = biling_aln_str.split('\n')[4:-3]

        trans_offset = trans_raw.startswith(' ')
        gloss_offset = gloss_raw.startswith(' ')

        try:
            a = Alignment()
            for line in biling_aln_lines:
                gloss_s, trans_s = line.split()[0:2]

                if '.' in gloss_s:
                    continue

                gloss_i = int(gloss_s)

                for trans_token in trans_s.split(','):
                    trans_i = int(trans_token)
                    if trans_i == 0:
                        continue
                    else:
                        if trans_offset:
                            trans_i -= 1
                        if gloss_offset:
                            gloss_i -= 1
                        a.add((trans_i, gloss_i))
        except:
            pass

        set_bilingual_alignment(inst, trans(inst), gloss(inst), a, aln_method=INTENT_ALN_MANUAL)

    return xc
Example #4
0
 def test_gloss_projection_unaligned(self):
     xc = xc_load(os.path.join(testfile_dir, "xigt/project_gloss_lang_tests.xml"))
     igt = xc[0]
     project_gloss_pos_to_lang(igt, tag_method=INTENT_POS_PROJ, unk_handling='keep')
     self.assertEqual('UNK', pos_tag_tier(igt, lang(igt).id, INTENT_POS_PROJ)[-1].value())
Example #5
0
def convert_pml(aln_path, out_path, hindi=True):

    if hindi:
        igt_data = retrieve_hindi()
    else:
        igt_data = retrieve_naacl()

    a_root = load_xml(aln_path)
    doc_a  = a_root.find(".//reffile[@name='document_a']").get('href')
    doc_b  = a_root.find(".//reffile[@name='document_b']").get('href')



    doc_a = os.path.join(os.path.join(os.path.dirname(aln_path), doc_a))
    doc_b  = os.path.join(os.path.join(os.path.dirname(aln_path), doc_b))

    # Load the sentences for each document.
    a_sents, a_glossed = load_sents(doc_a)
    b_sents, b_glossed = load_sents(doc_b)



    sent_alignments = a_root.findall(".//body/LM")

    assert (a_glossed and not b_glossed) or (b_glossed and not a_glossed), "Only one file should have glosses"

    xc = XigtCorpus()

    for sent_alignment in sent_alignments:

        # Get the sentence id...
        aln_id = sent_alignment.attrib.get('id')
        a_snt_id = re.search('^.+?-(.*)$', aln_id).group(1)
        if a_snt_id not in igt_data:
            continue

        # Get the text and tokens from the naacl data.
        pre_txt, lang_txt, gloss_txt, trans_txt = igt_data[a_snt_id]
        lang_tokens = lang_txt.split()
        gloss_tokens = gloss_txt.split()
        trans_tokens = trans_txt.split()

        a_snt_ref = sent_alignment.find('./tree_a.rf').text.split('#')[1]
        b_snt_ref = sent_alignment.find('./tree_b.rf').text.split('#')[1]

        word_alignments = sent_alignment.findall('./node_alignments/LM')

        a_snt, a_edges = a_sents[a_snt_ref]
        b_snt, b_edges = b_sents[b_snt_ref]

        assert isinstance(a_snt, Sentence)
        assert isinstance(b_snt, Sentence)
        # -------------------------------------------
        # Skip sentences if they are not found for whatever reason
        # -------------------------------------------
        if not a_snt or not b_snt:
            continue

        # -------------------------------------------
        # Start constructing the IGT Instance.
        # -------------------------------------------

        trans_snt, trans_indices = a_snt, a_edges
        gloss_snt, gloss_indices = b_snt, b_edges
        if a_glossed:
            trans_snt, trans_indices = b_snt, b_edges
            gloss_snt, gloss_indices = a_snt, a_edges

        # Hindi stuff...
        if hindi:
            lang_tokens = [w.text for w in gloss_snt]
            lang_postags   = [w.pos  for w in gloss_snt]
            lang_txt    = ' '.join(lang_tokens)

            trans_tokens = [w.text for w in trans_snt]
            trans_postags   = [w.pos  for w in trans_snt]
            trans_txt    = ' '.join(trans_tokens)

            gloss_tokens  = [w.gloss if w.gloss else 'NULL' for w in gloss_snt]
            gloss_postags = lang_postags
            gloss_txt     = ' '.join(gloss_tokens)



        inst = Igt(id=re.sub('s-', 'igt', a_snt_ref))
        nt   = Tier(type=ODIN_TIER_TYPE, id=NORM_ID, attributes={STATE_ATTRIBUTE:NORM_STATE})
        ll   = Item(id='n1', attributes={ODIN_TAG_ATTRIBUTE:ODIN_LANG_TAG}, text=lang_txt)
        gl   = Item(id='n2', attributes={ODIN_TAG_ATTRIBUTE:ODIN_GLOSS_TAG}, text=gloss_txt)
        tl   = Item(id='n3', attributes={ODIN_TAG_ATTRIBUTE:ODIN_TRANS_TAG}, text=trans_txt)
        nt.extend([ll,gl,tl])
        inst.append(nt)


        # -------------------------------------------
        # Handle the phrase tiers
        # -------------------------------------------
        generate_lang_phrase_tier(inst)
        generate_trans_phrase_tier(inst)

        def process_postags(sent, tokens):
            postags = []
            for i, token in enumerate(tokens):
                word = sent.getorder(i+1)
                if word is None:
                    postags.append(None)
                else:
                    postags.append(word.pos)
            return postags

        # -------------------------------------------
        # Now, handle the translation words.
        # -------------------------------------------
        tt = create_word_tier(ODIN_TRANS_TAG, trans_tokens, trans_phrase(inst)[0])
        inst.append(tt)

        if not hindi:
            trans_postags = process_postags(trans_snt, trans_tokens)

        add_pos_tags(inst, tt.id, trans_postags, tag_method=INTENT_POS_MANUAL)


        # -------------------------------------------
        # Handle the words tiers...
        # -------------------------------------------
        wt = create_word_tier(ODIN_LANG_TAG, lang_tokens, lang_phrase(inst)[0])
        gwt= create_word_tier(ODIN_GLOSS_TAG, gloss_tokens, gl)
        inst.extend([wt, gwt])
        # Quickly set the alignment for the gloss words.
        for w, gw in zip(wt, gwt):
            gw.alignment = w.id


        if not hindi:
            lang_postags = process_postags(gloss_snt, gloss_tokens)
            gloss_postags = lang_postags

        add_pos_tags(inst, wt.id, lang_postags, tag_method=INTENT_POS_MANUAL)
        add_pos_tags(inst, gwt.id, gloss_postags, tag_method=INTENT_POS_MANUAL)

        create_dt_tier(inst, assemble_ds(gloss_snt, gloss_indices), wt, INTENT_DS_MANUAL)
        create_dt_tier(inst, assemble_ds(trans_snt, trans_indices), tt, INTENT_DS_MANUAL)



        # -------------------------------------------
        # Now, the word alignments.
        # -------------------------------------------
        a = Alignment()
        for word_alignment in word_alignments:
            a_ref = word_alignment.find('./a.rf').text.split('#')[1]
            b_ref = word_alignment.find('./b.rf').text.split('#')[1]

            a_word = a_snt.getid(a_ref)
            b_word = b_snt.getid(b_ref)

            if a_word is None or b_word is None:
                continue

            if not hindi:
                a_idx  = a_word.order
                b_idx  = b_word.order
            else:
                a_idx  = a_snt.index(a_word)+1
                b_idx  = b_snt.index(b_word)+1

            # Make sure the gloss is in the
            if a_glossed:
                trans_idx = b_idx
                lang_idx  = a_idx
            else:
                trans_idx = a_idx
                lang_idx  = b_idx

            a.add((trans_idx, lang_idx))


        set_bilingual_alignment(inst, trans(inst), lang(inst), a, INTENT_ALN_MANUAL)
        set_bilingual_alignment(inst, trans(inst), gloss(inst), a, INTENT_ALN_MANUAL)

        xc.append(inst)

    with open(out_path, 'w', encoding='utf-8') as f:
        xigtxml.dump(f, xc)
Example #6
0
 def test_line_lengths(self):
     inst = self.xc[1]
     self.assertEqual(5, len(gloss(inst)))
     self.assertEqual(6, len(lang(inst)))