Example #1
0
    def _apply_controls_to_measurements(self, udata, qdata):

        udata = inputchecks.check_controls_data(udata, \
            self._discretization.system.nu, \
            self._discretization.number_of_controls)
        qdata = inputchecks.check_constant_controls_data(qdata, \
            self._discretization.system.nq)

        optimization_variables_for_measurements = ci.veccat([ \

                self._discretization.optimization_variables["U"], 
                self._discretization.optimization_variables["Q"], 
                self._discretization.optimization_variables["X"], 
                self._discretization.optimization_variables["EPS_U"], 
                self._discretization.optimization_variables["P"], 

            ])

        optimization_variables_controls_applied = ci.veccat([ \

                udata, 
                qdata, 
                self._discretization.optimization_variables["X"], 
                self._discretization.optimization_variables["EPS_U"], 
                self._discretization.optimization_variables["P"], 

            ])

        measurements_fcn = ci.mx_function( \
            "measurements_fcn", \
            [optimization_variables_for_measurements], \
            [self._discretization.measurements])

        [self._measurements_controls_applied] = \
            measurements_fcn([optimization_variables_controls_applied])
Example #2
0
    def _apply_controls_to_measurements(self, udata, qdata):

        udata = inputchecks.check_controls_data(udata, \
            self._discretization.system.nu, \
            self._discretization.number_of_controls)
        qdata = inputchecks.check_constant_controls_data(qdata, \
            self._discretization.system.nq)

        optimization_variables_for_measurements = ci.veccat([ \

                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],
                self._discretization.optimization_variables["P"],

            ])

        optimization_variables_controls_applied = ci.veccat([ \

                udata,
                qdata,
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],
                self._discretization.optimization_variables["P"],

            ])

        measurements_fcn = ci.mx_function( \
            "measurements_fcn", \
            [optimization_variables_for_measurements], \
            [self._discretization.measurements])

        self._measurements_controls_applied = \
            measurements_fcn(optimization_variables_controls_applied)
Example #3
0
    def _apply_parameters_to_objective(self):

        # As mentioned above, the objective does not depend on the actual
        # values of V, but on the values of P and EPS_U, while
        # P is fed from pdata, and EPS_U is supposed to be 0

        objective_free_variables = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],

            ])

        objective_free_variables_parameters_applied = ci.veccat([ \

                self._pdata,
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                ci.mx(*self._discretization.optimization_variables["EPS_U"].shape),

            ])

        objective_fcn = ci.mx_function("objective_fcn", \
            [objective_free_variables], [self._objective_parameters_free])

        self._objective = objective_fcn( \
            objective_free_variables_parameters_applied)
Example #4
0
    def _apply_parameters_to_equality_constraints(self):

        optimization_variables_for_equality_constraints = ci.veccat([ \

                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"], 
                self._discretization.optimization_variables["EPS_U"], 
                self._discretization.optimization_variables["P"], 

            ])

        optimization_variables_parameters_applied = ci.veccat([ \

                self._discretization.optimization_variables["U"], 
                self._discretization.optimization_variables["Q"], 
                self._discretization.optimization_variables["X"], 
                ci.mx(*self._discretization.optimization_variables["EPS_U"].shape), 
                self._pdata, 

            ])

        equality_constraints_fcn = ci.mx_function( \
            "equality_constraints_fcn", \
            [optimization_variables_for_equality_constraints], \
            [self._discretization.equality_constraints])

        [self._equality_constraints_parameters_applied] = \
            equality_constraints_fcn([optimization_variables_parameters_applied])
Example #5
0
    def _apply_parameters_to_objective(self):

        objective_free_variables = []
        objective_free_variables_parameters_applied = []

        for doe_setup in self._doe_setups:

            objective_free_variables.append( \
                doe_setup._discretization.optimization_variables["P"])
            objective_free_variables_parameters_applied.append( \
                doe_setup._pdata)

            for key in ["U", "Q", "X"]:

                objective_free_variables.append( \
                    doe_setup._discretization.optimization_variables[key])
                objective_free_variables_parameters_applied.append( \
                    doe_setup._discretization.optimization_variables[key])
                
        objective_free_variables = ci.veccat(objective_free_variables)
        objective_free_variables_parameters_applied = \
            ci.veccat(objective_free_variables_parameters_applied)

        objective_fcn = ci.mx_function("objective_fcn", \
            [objective_free_variables], [self._objective_parameters_free])

        [self._objective] = objective_fcn( \
            [objective_free_variables_parameters_applied])
Example #6
0
    def _apply_parameters_to_equality_constraints(self):

        optimization_variables_for_equality_constraints = ci.veccat([ \

                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"], 
                self._discretization.optimization_variables["EPS_U"], 
                self._discretization.optimization_variables["P"], 

            ])

        optimization_variables_parameters_applied = ci.veccat([ \

                self._discretization.optimization_variables["U"], 
                self._discretization.optimization_variables["Q"], 
                self._discretization.optimization_variables["X"], 
                ci.mx(*self._discretization.optimization_variables["EPS_U"].shape), 
                self._pdata, 

            ])

        equality_constraints_fcn = ci.mx_function( \
            "equality_constraints_fcn", \
            [optimization_variables_for_equality_constraints], \
            [self._discretization.equality_constraints])

        self._equality_constraints_parameters_applied = \
            equality_constraints_fcn(optimization_variables_parameters_applied)
Example #7
0
    def _apply_parameters_to_objective(self):

        # As mentioned above, the objective does not depend on the actual
        # values of V, but on the values of P and EPS_E and EPS_U, while
        # P is fed from pdata, and EPS_E, EPS_u are supposed to be 0

        objective_free_variables = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],

            ])

        objective_free_variables_parameters_applied = ci.veccat([ \

                self._pdata,
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                ci.mx(*self._discretization.optimization_variables["EPS_U"].shape),

            ])

        objective_fcn = ci.mx_function("objective_fcn", \
            [objective_free_variables], [self._objective_parameters_free])

        [self._objective] = objective_fcn( \
            [objective_free_variables_parameters_applied])
Example #8
0
    def _apply_parameters_to_objective(self):

        objective_free_variables = []
        objective_free_variables_parameters_applied = []

        for doe_setup in self._doe_setups:

            objective_free_variables.append( \
                doe_setup._discretization.optimization_variables["P"])
            objective_free_variables_parameters_applied.append( \
                doe_setup._pdata)

            for key in ["U", "Q", "X"]:

                objective_free_variables.append( \
                    doe_setup._discretization.optimization_variables[key])
                objective_free_variables_parameters_applied.append( \
                    doe_setup._discretization.optimization_variables[key])
                
        objective_free_variables = ci.veccat(objective_free_variables)
        objective_free_variables_parameters_applied = \
            ci.veccat(objective_free_variables_parameters_applied)

        objective_fcn = ci.mx_function("objective_fcn", \
            [objective_free_variables], [self._objective_parameters_free])

        self._objective = objective_fcn( \
            objective_free_variables_parameters_applied)
Example #9
0
    def _set_optimization_variables_initials(self, pinit, xinit):

        xinit = inputchecks.check_states_data(xinit, \
            self._discretization.system.nx, \
            self._discretization.number_of_intervals)
        repretitions_xinit = \
            self._discretization.optimization_variables["X"][:,:-1].shape[1] / \
                self._discretization.number_of_intervals
        
        Xinit = ci.repmat(xinit[:, :-1], repretitions_xinit, 1)

        Xinit = ci.horzcat([ \

            Xinit.reshape((self._discretization.system.nx, \
                Xinit.size() / self._discretization.system.nx)),
            xinit[:, -1],

            ])

        pinit = inputchecks.check_parameter_data(pinit, \
            self._discretization.system.np)
        Pinit = pinit

        Vinit = np.zeros(self._discretization.optimization_variables["V"].shape)
        EPS_Uinit = np.zeros( \
            self._discretization.optimization_variables["EPS_U"].shape)

        self._optimization_variables_initials = ci.veccat([ \

                Pinit,
                Xinit,
                EPS_Uinit,
                Vinit,

            ])
Example #10
0
    def _merge_equaltiy_constraints_parameters_applied(self):

        equality_constraints_parameters_applied = [ \
            doe_setup._equality_constraints_parameters_applied for \
            doe_setup in self._doe_setups]

        self._equality_constraints_parameters_applied = \
            ci.veccat(equality_constraints_parameters_applied)
Example #11
0
    def _merge_equaltiy_constraints_parameters_applied(self):

        equality_constraints_parameters_applied = [ \
            doe_setup._equality_constraints_parameters_applied for \
            doe_setup in self._doe_setups]

        self._equality_constraints_parameters_applied = \
            ci.veccat(equality_constraints_parameters_applied)
Example #12
0
    def _setup_residuals(self):

        self._residuals = ci.sqrt(self._weightings_vectorized) * \
            ci.veccat([ \

                self._discretization.optimization_variables["EPS_U"],
                self._discretization.optimization_variables["V"],

            ])
Example #13
0
    def _setup_residuals(self):

        self._residuals = ci.sqrt(self._weightings_vectorized) * \
            ci.veccat([ \

                self._discretization.optimization_variables["V"],
                self._discretization.optimization_variables["EPS_U"],

            ])
Example #14
0
    def _set_optimization_variables(self):

        self._optimization_variables = ci.veccat([ \

                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],

            ])
Example #15
0
    def _set_optimization_variables(self):

        self._optimization_variables = ci.veccat([ \

                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],

            ])
Example #16
0
    def _compute_optimized_covariance_matrix(self):

        covariance_matrix_optimized_input = ci.veccat([ \

                self._pdata,
                self.design_results["x"],
                np.zeros(self._discretization.optimization_variables["EPS_U"].shape)

            ])

        self._covariance_matrix_optimized = self._covariance_matrix_fcn( \
            covariance_matrix_optimized_input)
Example #17
0
    def _compute_optimized_covariance_matrix(self):

        covariance_matrix_optimized_input = ci.veccat([ \

                self._pdata,
                self.design_results["x"],
                np.zeros(self._discretization.optimization_variables["EPS_U"].shape)

            ])

        self._covariance_matrix_optimized = self._covariance_matrix_fcn( \
            [covariance_matrix_optimized_input])[0]
Example #18
0
    def _compute_initial_covariance_matrix(self):

        covariance_matrix_initial_input = ci.veccat([ \

                self._pdata,
                self._optimization_variables_initials,
                np.zeros(self._discretization.optimization_variables["EPS_U"].shape)

            ])


        self._covariance_matrix_initial = self._covariance_matrix_fcn( \
            [covariance_matrix_initial_input])[0]
Example #19
0
    def _compute_initial_covariance_matrix(self):

        covariance_matrix_initial_input = ci.veccat([ \

                self._pdata,
                self._optimization_variables_initials,
                np.zeros(self._discretization.optimization_variables["EPS_U"].shape)

            ])


        self._covariance_matrix_initial = self._covariance_matrix_fcn( \
            covariance_matrix_initial_input)
Example #20
0
    def _set_optimization_variables_lower_bounds(self, umin, qmin, xmin, x0):

        umin_user_provided = umin

        umin = inputchecks.check_controls_data(umin, \
            self._discretization.system.nu, 1)

        if umin_user_provided is None:

            umin = -np.inf * np.ones(umin.shape)

        Umin = ci.repmat(umin, 1, \
            self._discretization.optimization_variables["U"].shape[1])


        qmin_user_provided = qmin

        qmin = inputchecks.check_constant_controls_data(qmin, \
            self._discretization.system.nq)

        if qmin_user_provided is None:

            qmin = -np.inf * np.ones(qmin.shape)

        Qmin = qmin


        xmin_user_provided = xmin

        xmin = inputchecks.check_states_data(xmin, \
            self._discretization.system.nx, 0)

        if xmin_user_provided is None:

            xmin = -np.inf * np.ones(xmin.shape)

        Xmin = ci.repmat(xmin, 1, \
            self._discretization.optimization_variables["X"].shape[1])

        Xmin[:,0] = x0


        self._optimization_variables_lower_bounds = ci.veccat([ \

                Umin,
                Qmin,
                Xmin,

            ])
Example #21
0
    def _set_optimization_variables_lower_bounds(self, umin, qmin, xmin, x0):

        umin_user_provided = umin

        umin = inputchecks.check_controls_data(umin, \
            self._discretization.system.nu, 1)

        if umin_user_provided is None:

            umin = -np.inf * np.ones(umin.shape)

        Umin = ci.repmat(umin, 1, \
            self._discretization.optimization_variables["U"].shape[1])


        qmin_user_provided = qmin

        qmin = inputchecks.check_constant_controls_data(qmin, \
            self._discretization.system.nq)

        if qmin_user_provided is None:

            qmin = -np.inf * np.ones(qmin.shape)

        Qmin = qmin


        xmin_user_provided = xmin

        xmin = inputchecks.check_states_data(xmin, \
            self._discretization.system.nx, 0)

        if xmin_user_provided is None:

            xmin = -np.inf * np.ones(xmin.shape)

        Xmin = ci.repmat(xmin, 1, \
            self._discretization.optimization_variables["X"].shape[1])

        Xmin[:,0] = x0


        self._optimization_variables_lower_bounds = ci.veccat([ \

                Umin,
                Qmin,
                Xmin,

            ])
Example #22
0
    def _set_cov_matrix_derivative_directions(self):

        # These correspond to the optimization variables of the parameter
        # estimation problem; the evaluation of the covariance matrix, though,
        # does not depend on the actual values of V, EPS_E and EPS_U, and with
        # this, the DoE problem does not

        self._cov_matrix_derivative_directions = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["V"],
                self._discretization.optimization_variables["EPS_U"],

            ])
Example #23
0
    def _set_cov_matrix_derivative_directions(self):

        # These correspond to the optimization variables of the parameter
        # estimation problem; the evaluation of the covariance matrix, though,
        # does not depend on the actual values of V, EPS_E and EPS_U, and with
        # this, the DoE problem does not

        self._cov_matrix_derivative_directions = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],
                self._discretization.optimization_variables["V"],

            ])
Example #24
0
    def _setup_covariance_matrix_for_evaluation(self):

        covariance_matrix_free_variables = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],

            ])

        self._covariance_matrix_fcn = ci.mx_function("covariance_matrix_fcn", \
            [covariance_matrix_free_variables], \
            [self._covariance_matrix.covariance_matrix])
Example #25
0
    def _setup_covariance_matrix_for_evaluation(self):

        covariance_matrix_free_variables = ci.veccat([ \

                self._discretization.optimization_variables["P"],
                self._discretization.optimization_variables["U"],
                self._discretization.optimization_variables["Q"],
                self._discretization.optimization_variables["X"],
                self._discretization.optimization_variables["EPS_U"],

            ])

        self._covariance_matrix_fcn = ci.mx_function("covariance_matrix_fcn", \
            [covariance_matrix_free_variables], \
            [self._covariance_matrix.covariance_matrix])
Example #26
0
    def _set_optimization_variables_upper_bounds(self, umax, qmax, xmax, x0):

        umax_user_provided = umax

        umax = inputchecks.check_controls_data(umax, \
            self._discretization.system.nu, 1)

        if umax_user_provided is None:

            umax = np.inf * np.ones(umax.shape)

        Umax = ci.repmat(umax, 1, \
            self._discretization.optimization_variables["U"].shape[1])


        qmax_user_provided = qmax

        qmax = inputchecks.check_constant_controls_data(qmax, \
            self._discretization.system.nq)

        if qmax_user_provided is None:

            qmax = -np.inf * np.ones(qmax.shape)

        Qmax = qmax


        xmax_user_provided = xmax

        xmax = inputchecks.check_states_data(xmax, \
            self._discretization.system.nx, 0)

        if xmax_user_provided is None:

            xmax = np.inf * np.ones(xmax.shape)

        Xmax = ci.repmat(xmax, 1, \
            self._discretization.optimization_variables["X"].shape[1])

        Xmax[:,0] = x0


        self._optimization_variables_upper_bounds = ci.veccat([ \

                Umax,
                Xmax,

            ])
Example #27
0
    def _set_optimization_variables_upper_bounds(self, umax, qmax, xmax, x0):

        umax_user_provided = umax

        umax = inputchecks.check_controls_data(umax, \
            self._discretization.system.nu, 1)

        if umax_user_provided is None:

            umax = np.inf * np.ones(umax.shape)

        Umax = ci.repmat(umax, 1, \
            self._discretization.optimization_variables["U"].shape[1])


        qmax_user_provided = qmax

        qmax = inputchecks.check_constant_controls_data(qmax, \
            self._discretization.system.nq)

        if qmax_user_provided is None:

            qmax = -np.inf * np.ones(qmax.shape)

        Qmax = qmax


        xmax_user_provided = xmax

        xmax = inputchecks.check_states_data(xmax, \
            self._discretization.system.nx, 0)

        if xmax_user_provided is None:

            xmax = np.inf * np.ones(xmax.shape)

        Xmax = ci.repmat(xmax, 1, \
            self._discretization.optimization_variables["X"].shape[1])

        Xmax[:,0] = x0


        self._optimization_variables_upper_bounds = ci.veccat([ \

                Umax,
                Xmax,

            ])
Example #28
0
    def _compute_initial_covariance_matrix(self):

        covariance_matrix_initial_input = []

        for doe_setup in self._doe_setups:

            covariance_matrix_initial_input.append(doe_setup._pdata)
            covariance_matrix_initial_input.append( \
                doe_setup._optimization_variables_initials)

        covariance_matrix_initial_input = ci.veccat( \
            covariance_matrix_initial_input)


        self._covariance_matrix_initial = self._covariance_matrix_fcn( \
            [covariance_matrix_initial_input])[0]
Example #29
0
    def _compute_initial_covariance_matrix(self):

        covariance_matrix_initial_input = []

        for doe_setup in self._doe_setups:

            covariance_matrix_initial_input.append(doe_setup._pdata)
            covariance_matrix_initial_input.append( \
                doe_setup._optimization_variables_initials)

        covariance_matrix_initial_input = ci.veccat( \
            covariance_matrix_initial_input)


        self._covariance_matrix_initial = self._covariance_matrix_fcn( \
            covariance_matrix_initial_input)
Example #30
0
    def _setup_covariance_matrix_for_evaluation(self):

        covariance_matrix_free_variables = []

        for doe_setup in self._doe_setups:

            for key in ["P", "U", "Q", "X"]:

                covariance_matrix_free_variables.append( \
                    doe_setup._discretization.optimization_variables[key])

        covariance_matrix_free_variables = ci.veccat( \
            covariance_matrix_free_variables)

        self._covariance_matrix_fcn = ci.mx_function("covariance_matrix_fcn", \
            [covariance_matrix_free_variables], \
            [self._covariance_matrix.covariance_matrix])
Example #31
0
    def _setup_covariance_matrix_for_evaluation(self):

        covariance_matrix_free_variables = []

        for doe_setup in self._doe_setups:

            for key in ["P", "U", "Q", "X"]:

                covariance_matrix_free_variables.append( \
                    doe_setup._discretization.optimization_variables[key])

        covariance_matrix_free_variables = ci.veccat( \
            covariance_matrix_free_variables)

        self._covariance_matrix_fcn = ci.mx_function("covariance_matrix_fcn", \
            [covariance_matrix_free_variables], \
            [self._covariance_matrix.covariance_matrix])
Example #32
0
    def _set_weightings(self, wv, weps_u):

        input_error_weightings = \
            inputchecks.check_input_error_weightings(weps_u, \
            self._discretization.system.neps_u, 
            self._discretization.number_of_intervals)

        measurement_weightings = \
            inputchecks.check_measurement_weightings(wv, \
            self._discretization.system.nphi, \
            self._discretization.number_of_intervals + 1)

        self._weightings_vectorized = ci.veccat([ \

            input_error_weightings, 
            measurement_weightings,

            ])
Example #33
0
    def _set_weightings(self, wv, weps_u):

        input_error_weightings = \
            inputchecks.check_input_error_weightings(weps_u, \
            self._discretization.system.neps_u, \
            self._discretization.number_of_intervals)

        measurement_weightings = \
            inputchecks.check_measurement_weightings(wv, \
            self._discretization.system.nphi, \
            self._discretization.number_of_intervals + 1)

        self._weightings_vectorized = ci.veccat([ \

            input_error_weightings,
            measurement_weightings,

            ])
Example #34
0
    def _set_optimization_variables_initials(self, qinit, x0, uinit):

        self.simulation = Simulation(self._discretization.system, \
            self._pdata, qinit)
        self.simulation.run_system_simulation(x0, \
            self._discretization.time_points, uinit, print_status = False)
        xinit = self.simulation.simulation_results

        repretitions_xinit = \
            self._discretization.optimization_variables["X"][:,:-1].shape[1] / \
                self._discretization.number_of_intervals
        
        Xinit = ci.repmat(xinit[:, :-1], repretitions_xinit, 1)

        Xinit = ci.horzcat([ \

            Xinit.reshape((self._discretization.system.nx, \
                Xinit.size() / self._discretization.system.nx)),
            xinit[:, -1],

            ])

        uinit = inputchecks.check_controls_data(uinit, \
            self._discretization.system.nu, \
            self._discretization.number_of_intervals)
        Uinit = uinit

        qinit = inputchecks.check_constant_controls_data(qinit, \
            self._discretization.system.nq)
        Qinit = qinit

        self._optimization_variables_initials = ci.veccat([ \

                Uinit,
                Qinit,
                Xinit,

            ])
Example #35
0
    def _set_optimization_variables_initials(self, qinit, x0, uinit):

        self.simulation = Simulation(self._discretization.system, \
            self._pdata, qinit)
        self.simulation.run_system_simulation(x0, \
            self._discretization.time_points, uinit, print_status = False)
        xinit = self.simulation.simulation_results

        repretitions_xinit = \
            self._discretization.optimization_variables["X"][:,:-1].shape[1] / \
                self._discretization.number_of_intervals
        
        Xinit = ci.repmat(xinit[:, :-1], repretitions_xinit, 1)

        Xinit = ci.horzcat([ \

            Xinit.reshape((self._discretization.system.nx, \
                Xinit.numel() / self._discretization.system.nx)),
            xinit[:, -1],

            ])

        uinit = inputchecks.check_controls_data(uinit, \
            self._discretization.system.nu, \
            self._discretization.number_of_intervals)
        Uinit = uinit

        qinit = inputchecks.check_constant_controls_data(qinit, \
            self._discretization.system.nq)
        Qinit = qinit

        self._optimization_variables_initials = ci.veccat([ \

                Uinit,
                Qinit,
                Xinit,

            ])
Example #36
0
    def _compute_optimized_covariance_matrix(self):

        starting_position_design_results = 0

        covariance_matrix_optimized_input = []

        for doe_setup in self._doe_setups:

            covariance_matrix_optimized_input.append(doe_setup._pdata)

            covariance_matrix_optimized_input.append(self.design_results["x"][ \
                starting_position_design_results : \
                starting_position_design_results + \
                doe_setup._optimization_variables.shape[0]])

            starting_position_design_results += \
                doe_setup._optimization_variables.shape[0]

        covariance_matrix_optimized_input = ci.veccat( \
            covariance_matrix_optimized_input)

        self._covariance_matrix_optimized = self._covariance_matrix_fcn( \
            [covariance_matrix_optimized_input])[0]
Example #37
0
    def _compute_optimized_covariance_matrix(self):

        starting_position_design_results = 0

        covariance_matrix_optimized_input = []

        for doe_setup in self._doe_setups:

            covariance_matrix_optimized_input.append(doe_setup._pdata)

            covariance_matrix_optimized_input.append(self.design_results["x"][ \
                starting_position_design_results : \
                starting_position_design_results + \
                doe_setup._optimization_variables.shape[0]])

            starting_position_design_results += \
                doe_setup._optimization_variables.shape[0]

        covariance_matrix_optimized_input = ci.veccat( \
            covariance_matrix_optimized_input)

        self._covariance_matrix_optimized = self._covariance_matrix_fcn( \
            covariance_matrix_optimized_input)
Example #38
0
    def _set_optimization_variables_initials(self, pinit, xinit):

        xinit = inputchecks.check_states_data(xinit, \
            self._discretization.system.nx, \
            self._discretization.number_of_intervals)
        repretitions_xinit = \
            self._discretization.optimization_variables["X"][:,:-1].shape[1] / \
                self._discretization.number_of_intervals

        Xinit = ci.repmat(xinit[:, :-1], repretitions_xinit, 1)

        Xinit = ci.horzcat([ \

            Xinit.reshape((self._discretization.system.nx, \
                Xinit.numel() / self._discretization.system.nx)),
            xinit[:, -1],

            ])

        pinit = inputchecks.check_parameter_data(pinit, \
            self._discretization.system.np)
        Pinit = pinit

        Vinit = np.zeros(
            self._discretization.optimization_variables["V"].shape)
        EPS_Uinit = np.zeros( \
            self._discretization.optimization_variables["EPS_U"].shape)

        self._optimization_variables_initials = ci.veccat([ \

                Pinit,
                Xinit,
                Vinit,
                EPS_Uinit,

            ])