def test_invert(self): tf = T.RandomApply( transforms=[T.Identity(), T.ToTensor()], p=1, ) img_tensor = tf(self.img_pil) self.assertIsInstance(img_tensor, torch.Tensor) self.assertIsInstance(tf.invert(img_tensor), Image.Image)
def __call__(self, img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly flipped image. """ self._transform = T.Identity() if flip_coin(self.p): self._transform = HorizontalFlip() return self._transform(img)
def __call__(self, img): """ Args: img (PIL Image): Image to be converted to grayscale. Returns: PIL Image: Randomly grayscaled image. """ self._transform = T.Identity() if flip_coin(self.p): num_output_channels = 1 if img.mode == 'L' else 3 self._transform = Grayscale(num_output_channels=num_output_channels) return self._transform(img)
def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W) to be erased. Returns: img (Tensor): Erased Tensor image. """ self._transform = T.Identity() if flip_coin(self.p): x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=self.value) self._transform = T.Lambda( lambd=lambda img: F.erase(img, x, y, h, w, v, self.inplace), tf_inv=lambda img: img, repr_str='RandomErasing()' ) return img
def __call__(self, img): """ Args: img (PIL Image): Image to be Perspectively transformed. Returns: PIL Image: Random perspectivley transformed image. """ self._transform = T.Identity() if flip_coin(self.p): width, height = img.size startpoints, endpoints = self.get_params(width, height, self.distortion_scale) self._transform = Perspective( startpoints=startpoints, endpoints=endpoints, interpolation=self.interpolation, ) return self._transform(img)
def setUp(self) -> None: super().setUp() self.tf = T.Identity()
def __call__(self, img): self._transform = T.Identity() if flip_coin(self.p): self._transform = Compose(self.transforms) return self._transform(img)