Example #1
0
def run_ica(name, save_dir, lowpass, overwrite):

    ica_name = name + filter_string(lowpass) + '-ica.fif'
    ica_path = join(save_dir, ica_name)

    if overwrite or not isfile(ica_path):

        raw = io.read_filtered(name, save_dir, lowpass)
        epochs = io.read_epochs(name, save_dir, lowpass)

        ica = mne.preprocessing.ICA(n_components=0.95, method='fastica')
        ica.fit(epochs)

        eog_epochs = mne.preprocessing.create_eog_epochs(raw)
        ecg_epochs = mne.preprocessing.create_ecg_epochs(raw)

        eog_indices, eog_scores = ica.find_bads_eog(eog_epochs)
        ecg_indices, ecg_scores = ica.find_bads_ecg(ecg_epochs)

        ica.exclude += eog_indices
        ica.exclude += ecg_indices

        ica.save(ica_path)

    else:
        print('ica file: ' + ica_path + ' already exists')
Example #2
0
def apply_ica(name, save_dir, lowpass, overwrite):

    ica_epochs_name = name + filter_string(lowpass) + '-ica-epo.fif'
    ica_epochs_path = join(save_dir, ica_epochs_name)

    if overwrite or not isfile(ica_epochs_path):

        epochs = io.read_epochs(name, save_dir, lowpass)
        ica = io.read_ica(name, save_dir, lowpass)

        ica_epochs = ica.apply(epochs)

        ica_epochs.save(ica_epochs_path)

    else:
        print('ica epochs file: ' + ica_epochs_path + ' already exists')
Example #3
0
def estimate_noise_covariance(name, save_dir, lowpass, overwrite):

    covariance_name = name + filter_string(lowpass) + '-cov.fif'
    covariance_path = join(save_dir, covariance_name)

    if overwrite or not isfile(covariance_path):

        epochs = io.read_epochs(name, save_dir, lowpass)

        noise_covariance = mne.compute_covariance(epochs, n_jobs=1)

        noise_covariance = mne.cov.regularize(noise_covariance, epochs.info)

        mne.cov.write_cov(covariance_path, noise_covariance)

    else:
        print('noise covariance file: '+ covariance_path + \
                ' already exists')
def plot_epochs_image(name, save_dir, lowpass, subject, save_plots,
                      figures_path):
                          
    channel = 'MEG1812'                          
    epochs = io.read_epochs(name, save_dir, lowpass)
    picks = mne.pick_channels(epochs.info['ch_names'], [channel])
    for trial_type in epochs.event_id:
        epochs_image = mne.viz.plot_epochs_image(epochs[trial_type], picks)
        plt.title(trial_type)

        if save_plots:
            save_path = join(figures_path, subject, 'epochs',
                             trial_type + '_' + channel + '_' + name + \
                             filter_string(lowpass) + '.jpg')          
            epochs_image[0].savefig(save_path, dpi=600)
            print 'figure: ' + save_path + ' has been saved'
        else:
            print 'Not saving plots; set "save_plots" to "True" to save'