Example #1
0
def parse_run(params):
    sys.stdout.write("\nINPUT FILE: " + params.input_file)
    sys.stdout.write("\nOUTPUT FILE: " + params.output_file)
    sys.stdout.write("\nMODELS FILE: " + params.models + "\n")
    sys.stdout.flush()

    components = params.run.split(",")
    tokenize = True if "tokenizer" in components else False
    compound = True if "compound" in components else False
    lemmatize = True if "lemmatizer" in components else False
    tag = True if "tagger" in components else False
    parse = True if "parser" in components else False

    # common elements load
    sys.stdout.write("\nLoading embeddings : " + params.embeddings + " ...\n")
    embeddings = WordEmbeddings()
    embeddings.read_from_file(params.embeddings, None)

    encodings = None
    if tokenize == True:
        if not os.path.isfile(
                os.path.join(params.models, "tokenizer-tok.bestAcc")):
            sys.stdout.write(
                "\n\tTokenizer model not found! (" +
                os.path.join(params.models, "tokenizer-tok.bestAcc") + ")")
            sys.stdout.flush()
            sys.exit(1)
        sys.stdout.write("\n\tTokenization enabled.\n")
        tokenizer_encodings = Encodings(verbose=False)
        tokenizer_encodings.load(
            os.path.join(params.models, "tokenizer.encodings"))
    if compound == True:
        if not os.path.isfile(os.path.join(params.models, "compound.bestAcc")):
            sys.stdout.write("\n\tCompound word expander model not found!")
            sys.stdout.flush()
            sys.exit(1)
        sys.stdout.write("\n\tCompound word expander enabled.\n")
        if encodings == None:
            encodings = Encodings(verbose=False)
            encodings.load(os.path.join(params.models, "lemmatizer.encodings"))
    if lemmatize == True:
        if not os.path.isfile(os.path.join(params.models,
                                           "lemmatizer.bestACC")):
            sys.stdout.write("\n\tLemmatization model not found!")
            sys.stdout.flush()
            sys.exit(1)
        sys.stdout.write("\n\tLemmatization enabled.\n")
        if encodings == None:
            encodings = Encodings(verbose=False)
            encodings.load(os.path.join(params.models, "lemmatizer.encodings"))
    if tag == True:
        if not os.path.isfile(os.path.join(params.models,
                                           "tagger.bestOVERALL")):
            sys.stdout.write("\n\tTagger model not found!")
            sys.stdout.flush()
            sys.exit(1)
        sys.stdout.write("\n\tTagger enabled.\n")
        if encodings == None:
            encodings = Encodings(verbose=False)
            encodings.load(os.path.join(params.models, "tagger.encodings"))
    if parse == True:
        if not os.path.isfile(os.path.join(params.models, "parser.bestUAS")):
            sys.stdout.write("\n\tParser model not found!")
            sys.stdout.flush()
            sys.exit(1)
        sys.stdout.write("\n\tParser enabled.\n")
        if encodings == None:
            encodings = Encodings(verbose=False)
            encodings.load(os.path.join(params.models, "parser.encodings"))

    sequences = None
    if tokenize:
        sys.stdout.write("\nTokenizing " + params.input_file + " ... \n\t")
        sys.stdout.flush()

        from io_utils.config import TieredTokenizerConfig
        from generic_networks.tokenizers import TieredTokenizer
        config = TieredTokenizerConfig(
            os.path.join(params.models, "tokenizer.conf"))
        tokenizer_object = TieredTokenizer(config,
                                           tokenizer_encodings,
                                           embeddings,
                                           runtime=True)
        tokenizer_object.load(os.path.join(params.models, "tokenizer"))

        with open(params.input_file, 'r') as file:
            lines = file.readlines()
        # analyze use of spaces in first part of the file
        test = ""
        useSpaces = " "
        cnt = 0
        while True:
            test = test + lines[cnt]
            # print(lines[cnt])
            if cnt >= len(lines) or cnt > 5:
                break
            cnt += 1
        if float(test.count(' ')) / float(len(test)) < 0.02:
            useSpaces = ""
        # print (str(float(test.count(' '))/float(len(test))))
        i = -1
        input_string = ""
        sequences = []
        while i < len(lines) - 1:
            i += 1
            input_string = input_string + lines[i].replace("\r", "").replace(
                "\n", "").strip() + useSpaces
            if lines[i].strip() == "" or i == len(lines) - 1:  # end of block
                if input_string.strip() != "":
                    sequences += tokenizer_object.tokenize(input_string)
                input_string = ""

        del tokenizer_object  # free memory
    else:
        ds = Dataset(params.input_file)
        sequences = ds.sequences
    sys.stdout.write(" done\n")
    sys.stdout.flush()

    if compound:
        sys.stdout.write("\nCompound word expanding " + params.input_file +
                         " ... \n\t")
        sys.stdout.flush()
        from generic_networks.token_expanders import CompoundWordExpander
        from io_utils.config import CompoundWordConfig
        config = CompoundWordConfig(
            os.path.join(params.models, "compound.conf"))
        compoundwordexpander_object = CompoundWordExpander(config,
                                                           encodings,
                                                           embeddings,
                                                           runtime=True)
        compoundwordexpander_object.load(
            os.path.join(params.models, "compound.bestAcc"))
        sequences = compoundwordexpander_object.expand_sequences(sequences)
        del compoundwordexpander_object  # free memory
        sys.stdout.write(" done\n")
        sys.stdout.flush()

    if parse == True:
        sys.stdout.write("\nParsing " + params.input_file + " ... \n\t")
        sys.stdout.flush()
        from io_utils.config import ParserConfig
        from generic_networks.parsers import BDRNNParser
        config = ParserConfig(os.path.join(params.models, "parser.conf"))
        parser_object = BDRNNParser(config,
                                    encodings,
                                    embeddings,
                                    runtime=True)
        parser_object.load(os.path.join(params.models, "parser.bestUAS"))
        sequences = parser_object.parse_sequences(sequences)
        del parser_object  # free memory
        sys.stdout.write(" done\n")
        sys.stdout.flush()

    if tag == True:
        sys.stdout.write("\nTagging " + params.input_file + " ... \n\t")
        sys.stdout.flush()
        from io_utils.config import TaggerConfig
        from generic_networks.taggers import BDRNNTagger
        config = TaggerConfig(os.path.join(params.models, "tagger.conf"))
        tagger_object_UPOS = BDRNNTagger(config,
                                         encodings,
                                         embeddings,
                                         runtime=True)
        tagger_object_UPOS.load(os.path.join(params.models, "tagger.bestUPOS"))
        tagger_object_XPOS = BDRNNTagger(config,
                                         encodings,
                                         embeddings,
                                         runtime=True)
        tagger_object_XPOS.load(os.path.join(params.models, "tagger.bestXPOS"))
        tagger_object_ATTRS = BDRNNTagger(config,
                                          encodings,
                                          embeddings,
                                          runtime=True)
        tagger_object_ATTRS.load(
            os.path.join(params.models, "tagger.bestATTRS"))

        new_sequences = []
        for sequence in sequences:
            new_sequence = copy.deepcopy(sequence)
            predicted_tags_UPOS = tagger_object_UPOS.tag(new_sequence)
            predicted_tags_XPOS = tagger_object_XPOS.tag(new_sequence)
            predicted_tags_ATTRS = tagger_object_ATTRS.tag(new_sequence)
            for entryIndex in range(len(sequence)):
                new_sequence[entryIndex].upos = predicted_tags_UPOS[
                    entryIndex][0]
                new_sequence[entryIndex].xpos = predicted_tags_XPOS[
                    entryIndex][1]
                new_sequence[entryIndex].attrs = predicted_tags_ATTRS[
                    entryIndex][2]
            new_sequences.append(new_sequence)
        sequences = copy.deepcopy(new_sequences)
        del tagger_object_UPOS  # free memory
        del tagger_object_XPOS  # free memory
        del tagger_object_ATTRS  # free memory
        sys.stdout.write(" done\n")
        sys.stdout.flush()

    if lemmatize:
        sys.stdout.write("\nLemmatizing " + params.input_file + " ... \n\t")
        sys.stdout.flush()
        from generic_networks.lemmatizers import FSTLemmatizer
        from io_utils.config import LemmatizerConfig
        config = LemmatizerConfig(
            os.path.join(params.models, "lemmatizer.conf"))
        lemmatizer_object = FSTLemmatizer(config,
                                          encodings,
                                          embeddings,
                                          runtime=True)
        lemmatizer_object.load(
            os.path.join(params.models, "lemmatizer.bestACC"))
        sequences = lemmatizer_object.lemmatize_sequences(sequences)
        del lemmatizer_object  # free memory
        sys.stdout.write(" done\n")
        sys.stdout.flush()

    output_dataset = Dataset()
    output_dataset.sequences = sequences
    output_dataset.write(params.output_file)
Example #2
0
            new_sequences = []
            for sequence in sequences:
                new_sequence = copy.deepcopy(sequence)
                predicted_tags_UPOS = self.models[PipelineComponents.TAGGER][0].tag(new_sequence)
                predicted_tags_XPOS = self.models[PipelineComponents.TAGGER][1].tag(new_sequence)
                predicted_tags_ATTRS = self.models[PipelineComponents.TAGGER][2].tag(new_sequence)
                for entryIndex in range(len(sequence)):
                    new_sequence[entryIndex].upos = predicted_tags_UPOS[entryIndex][0]
                    new_sequence[entryIndex].xpos = predicted_tags_XPOS[entryIndex][1]
                    new_sequence[entryIndex].attrs = predicted_tags_ATTRS[entryIndex][2]
                new_sequences.append(new_sequence)

            sequences = new_sequences

        if PipelineComponents.LEMMATIZER in pipeline and self.lemmatizer_enabled:
            sequences = self.models[PipelineComponents.LEMMATIZER].lemmatize_sequences(sequences)

        return sequences


if __name__ == "__main__":
    cube = Cube()
    cube.load('ro')
    sequences = cube.process_text(text="ana are mere dar nu are pere și mănâncă miere.")
    sys.stdout.write("\n\n\n")
    from io_utils.conll import Dataset

    ds = Dataset()
    ds.sequences = sequences
    ds.write_stdout()