def main(argv: Tuple[str]) -> None: """Runs the TILDE model and saves the results. Arguments: argv {Tuple[str]} -- List of one parameters. There should be exactly one parameter - the path to the config file inside the tmp dir. This config file will be used to get all other information and process the correct images. """ if len(argv) <= 0: raise RuntimeError("Missing argument <path_to_config_file>. Abort") with open(argv[0], 'rb') as src: config_file = pickle.load(src, encoding='utf-8') config, file_list = config_file model = load_tfeat() if config['task'] == 'descriptors': for file in tqdm(file_list): descriptors = compute(file, config, model) if descriptors is not None: io_utils.save_descriptor_output(file, config, descriptors) elif config['task'] == 'patches': for file in tqdm(file_list): descriptors = computeForPatchImages(file, config, model) if descriptors is not None: io_utils.save_descriptor_output(file, config, descriptors)
def main(argv: Tuple[str]) -> None: """Runs the LIFT model and saves the results. Arguments: argv {Tuple[str]} -- List of one parameters. There should be exactly one parameter - the path to the config file inside the tmp dir. This config file will be used to get all other information and """ if len(argv) <= 0: raise RuntimeError("Missing argument <path_to_config_file>. Abort") with open(argv[0], 'rb') as src: config_file = pickle.load(src, encoding='utf-8') config, file_list = config_file model = load_model() if config['task'] == 'keypoints': for file in tqdm(file_list): keypoints, keypoints_image, heatmap_image = detect( file, config, model) if keypoints is not None: io_utils.save_detector_output(file, config['detector_name'], config, keypoints, keypoints_image, heatmap_image) elif config['task'] == 'descriptors': for file in tqdm(file_list): descriptors = compute(file, config, model) if descriptors is not None: io_utils.save_descriptor_output(file, config, descriptors)
def main(argv: Tuple[str]) -> None: """Runs the TILDE model and saves the results. Arguments: argv {Tuple[str]} -- List of one parameters. There should be exactly one parameter - the path to the config file inside the tmp dir. This config file will be used to get all other information and """ if len(argv) <= 0: raise RuntimeError("Missing argument <path_to_config_file>. Abort") with open(argv[0], 'rb') as src: config_file = pickle.load(src, encoding='utf-8') _config, file_list = config_file # Since we cannot split detector and descriptor in the superpoint model, # we handle SuperPoint as a detector and add the property `descriptor_name` # with value 'superpoint' to be able to save the descriptors. # Note, that superpoint can only handle superpoint keypoints to generate # descriptors, but the found keypoints can still be used by other descriptors. config = copy.deepcopy(_config) config['descriptor_name'] = 'superpoint' model = load_superpoint() if config['task'] == 'keypoints': for file in tqdm(file_list): keypoints, descriptors, keypoints_image, heatmap_image = detect( file, config, model) # Save detector output io_utils.save_detector_output(file, config['detector_name'], config, keypoints, keypoints_image, heatmap_image) # Save descriptor output io_utils.save_descriptor_output(file, config, descriptors) elif config['task'] == 'patches': for file in tqdm(file_list): descriptors = computeForPatchImages(file, config, model) if descriptors is not None: io_utils.save_descriptor_output(file, config, descriptors)