Example #1
0
    logger.info('Updated image generation parameters: %s', image_generation_params)

    #Compute predictions
    num_prediction_steps = num_prediction_steps or ceil(len(input_data) / image_generation_params.batch_size)
    predictor = Prediction(model, input_params, image_generation_params)
    predicted_data = predictor.predict(input_data, num_prediction_steps)

    #Compute accuracy
    num_matches = (predicted_data[constants.PANDAS_MATCH_COLUMN].to_numpy().nonzero())[0].shape[0]
    num_mismatches = len(predicted_data[constants.PANDAS_MATCH_COLUMN]) - num_matches
    accuracy = (num_matches/len(predicted_data[constants.PANDAS_MATCH_COLUMN])) * 100.

    #Write-out predicted output
    prediction_result_file = InputDataFile(constants.PREDICTION_RESULT_FILE_NAME_GUIDANCE)
    prediction_result_file.save(predicted_data, 0, 0)
    input_files_client.put_all([prediction_result_file.file_name(0, 0)])

    print_summary = """
                        Result Dataframe: {}
                        Total predictions: {}
                        Correct predictions: {}
                        Wrong predictions: {}
                        Accuracy: {}
                    """.format(
                            predicted_data,
                            len(predicted_data),
                            num_matches,
                            num_mismatches,
                            accuracy)

    #Print summary
Example #2
0
    #Prepare input files
    input_files_client = InputFiles(dropbox)
    input_data = input_files_client.get_all([input_data])[input_data]

    #Input data as pandas data frame
    input_data = csv_to_dataframe(input_data)
    ####################################### Prepare the input dataset [End] ############################################

    ####################################### Rebalance the dataset [Start] ############################################
    #Rebalance the data and obtain the statistics
    rebalancer = Rebalancing(input_data, label_col)
    result, pre_stats, post_stats = rebalancer.rebalance(statistics=True)
    ####################################### Rebalance the dataset [End] ############################################

    #Output to a file
    dataframe_to_csv(result, output_file)

    ####################################### Process output [Start] ############################################
    #Upload the output to dropbox
    if dropbox:
        input_files_client.put_all([output_file])

    print_summary = """
                        Pre-balancing statistics: {}
                        Results: {}
                        Post-balancing statistics: {}
                    """.format(pre_stats, result, post_stats)

    print(print_summary)
    ####################################### Process output [End] ############################################